首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   3篇
  物理学   9篇
  2014年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
超声空化的研究方法及进展   总被引:15,自引:5,他引:10       下载免费PDF全文
综述了超声空化研究的各种方法及研究进展,总结了空化研究中存在的问题,简要介绍了超声空化在基因导入方面应用的新进展。  相似文献
2.
超声波声孔效应中气泡动力学的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
陈谦  邹欣晔  程建春 《物理学报》2006,55(12):6476-6481
在超声快速制取组织细胞病理切片的过程中,发现激励信号对切片制取效果有明显的影响.为了掌握超声激励信号对组织细胞的影响规律,达到快速制取病理切片的最佳状态,从气泡空化模型入手,通过改变激励信号频率、声压、气泡初始半径和液体黏滞系数等参量,研究了声孔效应中气泡动力学激励机制.数值计算表明:空化泡振动随激励声压增强而升高,随液体黏滞系数增强而减弱;一定频率范围内空化泡振动能保持在膨胀、收缩和振荡的稳定空化状态,存在空化泡稳态振动的最佳激励频率;一定初始半径能保证空化泡产生稳定的振动,存在空化泡稳态振动幅度最大的初始半径.实际操作中,在频率、声压、初始半径和黏滞系数综合作用的若干空化阈内,声孔效应使超声快速法制取细胞组织切片获得最佳效果.  相似文献
3.
This work investigates whether the application of sonoporation is limited by the size of a macromolecule being delivered and by the ability of cells to proliferate following uptake. KHT-C cells in suspension were exposed to variations in ultrasound pressure (0-570 kPa) and microbubble shell-type (lipid and protein) at fixed settings of 500 kHz centre frequency, 32 μs pulse duration, 3 kHz pulse repetition frequency and 2 min insonation. Reversible permeability (PR), defined as the number of cells stained with FITC-dextran and unstained with propidium iodide (i.e., PI-viable), was measured with flow cytometry for marker molecules ranging from 10 kDa to 2 MDa in size. Viable permeability (PV) defined as the number of permeabilised cells that maintained their ability to proliferate, was measured by clonogenic assay. Comparable intracellular delivery of all sizes of molecules was achieved, indicating that intracellular delivery of common therapeutic drugs may not be limited by molecular size. Maximum PR’s of 80% (at 10 kDa) and 55% (at 10 kDa) were achieved with lipid coated bubbles at 3.3% v/v and protein coated bubbles at 6.7% v/v concentrations. The PI-viability was approximately 80% at 570 kPa in both cases. The maximum PV achieved with both agents was 22%, while inducing a lower overall clonogenic viability with the lipid (39%) compared to the protein (56%) shelled bubbles. This study demonstrates that large macromolecules, up to 2 MDa in size, can be delivered with high efficiency to cells which undergo reversible permeabilisation, maintaining long-term viability in approximately half of the cells.  相似文献
4.
We report the first direct observation for a single stable sonoluminescing bubble of a shape instability. Furthermore we show that stable saturation of the shape distortion caused by the instability for a certain range of parameters is experimentally possible and furthermore is directly linked to the curious phenomenon of flash by flash period doubling of the sonoluminescent emission as the afterbounce instability causing the shape distortion is always period doubled whenever the emission is & vice versa.  相似文献
5.
The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6 mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm2 (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20–23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis.  相似文献
6.

Introduction

We have previously reported enhanced cytotoxic effects of both doxorubicin and antisense oligonucleotides using an optimized ultrasound regime of a single 10 s exposure in burst-mode (4 MHz, 32 W/cm2(SaTa), 50 ms burst period) in both PC3 (prostate cancer) cells and angiogenic Huvec (human umbilical cord endothelial cells). The objective of this study was to investigate the effect of ultrasound on the cellular uptake of both hydrophilic agents (rhodamine R123, doxorubicin hydrochloride and mannitol) and hydrophobic agents (rhodamine R6G and paclitaxel) using the same 4 MHz ultrasound exposure system.

Methods

PC3 cells and Huvec were incubated with solutions of radioactive or fluorescent compounds for 1 h and ultrasound was then applied to cells. Following washing and lysis of cells, the degree of drug uptake was measured using liquid scintillation counting or fluorescence spectroscopy.

Results

Ultrasound exposure resulted in the enhanced uptake of both hydrophilic and hydrophobic compounds into cells. For paclitaxel, approximately 100% increased uptake was observed when the drug was encapsulated in a nanoparticulate micellar formulation compared to approximately 50% for free drug.

Conclusions

The 4 MHz, 32 W/cm2 ultrasound exposure regime (using burst-mode with 50 ms burst period) allows for the enhanced uptake of both water soluble and insoluble compounds into proliferating cancer and angiogenic cells.  相似文献
7.
Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.  相似文献
8.
Cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonoporative and sonothrombolytic phenomena. Microscopic particle-image velocimetry experiments are presented. Results show that many different microstreaming patterns are possible around a microbubble when it is on a surface, albeit for microbubbles much larger than used in clinical practice. Each pattern is associated with a particular oscillation mode of the bubble, and changing between patterns is achieved by changing the sound frequency. Each microstreaming pattern also generates different shear stress and stretch/compression distributions in the vicinity of a bubble on a wall. Analysis of the micro-PIV results also shows that ultrasound-driven microstreaming flows around bubbles are feasible mechanisms for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Patterns show significant variations around the bubble, suggesting sonoporation may be either enhanced or inhibited in different zones across a cellular surface. Thus, alternating the patterns may result in improved sonoporation and sonothrombolysis. The clear and reproducible delineation of microstreaming patterns based on driving frequency makes frequency-based pattern alternation a feasible alternative to the clinically less desirable practice of increasing sound pressure for equivalent sonoporative or sonothrombolytic effect. Surface divergence is proposed as a measure relevant to sonoporation.  相似文献
9.
莫润阳  林书玉  王成会 《物理学报》2011,60(11):114306-114306
理论和实验研究了超声空化场中的H-22型肝癌细胞产生可逆声孔效应的剪应力阈值.本文用1.37 MHz的聚焦声场,当超顺磁性纳米氧化铁在细胞悬液中的终浓度为410 μg/mL,换能器负载电功率为2 W,超声辐照60 s,细胞存活率90%以上时,有45.9±13.5%的细胞显示普鲁士蓝染阳性,暗示超声作用下,这些细胞表面曾出现可逆性微孔而使磁性微粒由此进入细胞内.利用无界自由空间微泡运动方程的球对称稳态解对实验条件下细胞膜表面的切变应力进行数值估算,结果表明,使H-22细胞产生可逆性声孔效应的微流剪应力阈值为697 Pa. 关键词: 声孔效应 磁性标记 微流 剪应力  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号