首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   4篇
  国内免费   40篇
化学   287篇
物理学   30篇
  2023年   23篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   26篇
  2010年   12篇
  2009年   23篇
  2008年   23篇
  2007年   21篇
  2006年   17篇
  2005年   9篇
  2004年   15篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   9篇
  1996年   3篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有317条查询结果,搜索用时 31 毫秒
1.
The conformations adopted by urea and thiourea functional groups influence catalysis and binding. We combine data-mining with quantum chemical calculations to understand the differences in conformational behavior for these two important structural motifs. We developed a Python tool to automate the compilation of X-ray structural information and perform conformational clustering and visualization, based on SMILES input. While diarylureas have an overwhelming preference for the anti,anti-conformer, diarylthioureas adopt a mixture of anti,anti- and anti,syn-conformers. Computations show the anti,anti-thiourea conformer is destabilized by out-of-plane rotations which avoid a steric clash with the sulfur atom. These conformational preferences were studied computationally under a variety of conditions, and apart from in the gas-phase, a preference for anti,anti-ureas was found. Consistent with experiments, this preference increases in more polar environments. Quantitative predicted ratios are sensitive to the computational treatment of solvation effects, with COSMO-RS giving more realistic amounts of the anti,anti-conformer in THF and DMSO.  相似文献   
2.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   
3.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
4.
Polymer materials with low water uptake exhibit a highly heterogeneous interior characterized by water clusters in the form of nanodroplets and nanochannels. Here, based on our recent insights from computer simulations, we argue that the water cluster structure has large implications for ionic transport and selective permeability in polymer membranes. Importantly, we demonstrate that the two key quantities for transport, the ion diffusion and the solvation free energy inside the polymer, are extremely sensitive to molecular details of the water clusters. In particular, we highlight the significance of water droplet interface potentials and the nature of hopping diffusion through transient water channels. These mechanisms can be harvested and fine-tuned to optimize selectivity in ionic transport in a wide range of applications.  相似文献   
5.
6.
Densities and viscosities were measured for the aqueous buffer (MES, MOPS, or MOPSO) solutions containing different concentrations of polyvinylpyrrolidone (PVP) (5, 10, 15, 20 and 30) mass% at temperatures from (298.15 to 318.15) K under atmospheric pressure. The DFT calculations were also performed and the binding energies of the possible (PVP + buffer) complexes were obtained. The experimental and computational results reveal the interactions of the PVP with the constituent compounds in the aqueous buffer solutions. Additionally we have explored the solvation behavior of the buffers by measuring the densities and the viscosities data of the aqueous buffer solutions from (0.0 to 1.0) mol · kg−1 at temperatures from (298.15 to 318.15) K. The viscosity results were correlated with the Jones–Dole equation. The correlated results confirmed that all the investigated buffers behave as Kosmotropes (structure makers).  相似文献   
7.
Raman and IR spectroscopy have been used to elucidate the solvation process in a mixed water-acetonitrile solvent in the CN stretching region. The number and positions of the components forming the spectral contour are established by Fourier deconvolution and Factor analysis and their areas are determined by fitting. The forms of existence of acetonitrile in the mixed solvent are discussed.  相似文献   
8.
《印度化学会志》2021,98(9):100122
Salophen is a weakly fluorescent Schiff base which forms emissive co-ordination complexes with Zn2+ and Al3+. The complex with Al3+ is significantly more fluorescent than that with Zn2+, presumably because the dimeric complex with Zn2+ is associated with additional nonradiative channels. This contention has been put to test, through a careful investigation of excited state dynamics of the anionic form of salophen (Sal2−), which is the form in which the ligand exists in the complexes. The emissive excited state of the anion (Sal2−) has been found to be solvated and conformationally relaxed, over tens of picosecond. It is significantly more fluorescent than the neutral compound, with fluorescence lifetime that is longer by almost two orders of magnitude. Fluorescence lifetime of the anion is in fact longer than that of the complex with Zn2+ and slightly less than that of the complex with Al3+. So, the earlier hypothesis about additional nonradiative deactivation pathways in the Zn2+ complex gains credence from the present study.  相似文献   
9.
Density functional theory (DFT) studies are done to investigate structural and electronic properties of (5,5) chirality single walls boron nitride nanotubes (BNNTs) in the armchair model interacting with metformin (MF) on the surface and ends. Our calculations consider the exchange-correlation energies with the Hamprecht–Cohen–Tozer–Handy functional within the generalized gradient approximation (HCTH-GGA) and the double polarized DNP base function. The geometry optimization follows the minimum energy criterion for all six geometries we have considered. Results show that the MF is adsorbed through the groups NH2–NH at one end of the nanotube. The system polarity is increased which indicates the possible dispersion and solubility. Moreover the interaction between these species induces an increase in the chemical reactivity of the order of 0.42 eV. Meanwhile the solvation in water keeps the semiconductor characteristics of both nanotube and MF. The work function of the BNNT-MF is drastically reduced respect to the pristine system when the BN nanotube is doped at its surface and ends with carbon. This means that the functionalized BN nanotube facilitates conditions to improve field emission.  相似文献   
10.
Partial molar enthalpies and excess enthalpies HE of binary mixtures of heptane + secondary and tertiary n-alkyl, primary cycloalkyl, and secondary (hetero)cyclic amines have been determined at 298.15 K by isothermal titration calorimetry in the whole composition range. All mixtures showed positive HE values which decrease with increasing amine size in each category, and decrease in the order cyclic primary > cyclic secondary > linear primary [1] > secondary > tertiary when comparing amines of similar size in different categories. From partial molar enthalpies at infinite dilution and known enthalpies of vaporization, the solvation enthalpies have been calculated either for heptane in amines and for amines in heptane. These quantities, together with their cavitational and interactional terms obtained applying the scaled particle theory, are discussed to get insight into the types and relative strength of solute-solvent interactions and into their effects on molecular structure features such as branching and cyclization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号