首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   28篇
  国内免费   43篇
化学   191篇
力学   74篇
数学   246篇
物理学   279篇
  2023年   8篇
  2022年   10篇
  2021年   14篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   12篇
  2016年   29篇
  2015年   21篇
  2014年   43篇
  2013年   59篇
  2012年   52篇
  2011年   45篇
  2010年   43篇
  2009年   52篇
  2008年   48篇
  2007年   40篇
  2006年   42篇
  2005年   30篇
  2004年   30篇
  2003年   27篇
  2002年   13篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   12篇
  1995年   13篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
1.
Biomass syngas is a form of renewable energy with very broad application prospects, and it has different combustion characteristics according to the fuel composition and processing technology of biomass syngas. The influence of combustion composition, diluent and temperature variation on combustion characteristics were studied in this paper. The FFCM-1 mechanism was used to investigate the combustion characteristics of CO/CH4/H2 under varied diluents CO2/N2 and temperature by using spherical expansion flame method and ANSYS CHEMKIN-PRO. The experimental laminar burning velocity was compared with the simulation results of FFCM-1 mechanism. The results reveal that the experimental data are in good agreement with the simulation results, which are somewhat different under the condition of rich fuel. The laminar burning velocity decreases significantly with the increase of diluent CO2/N2, with the effect of diluent CO2 being more significant. The laminar burning velocity increase dramatically with the increase of initial temperature, and the adiabatic flame temperature also decreases with the increase of diluent. The reduction caused by diluent CO2 is much larger than that caused by diluent N2. The change of initial temperature also affects the adiabatic flame temperature, but the range of variation is not as pronounced as that of diluent. Not only was the interaction between the combustion characteristics of CO/CH4/H2 under different diluents and temperature changes explored in this paper, but the influence mechanism was also revealed in depth.  相似文献   
2.
This paper presents a new sensitivity analysis method for coupled acoustic–structural systems subjected to non-stationary random excitations. The integral of the response power spectrum density (PSD) of the coupled system is taken as the objective function. The thickness of each structural element is used as a design variable. A time-domain algorithm integrating the pseudo excitation method (PEM), direct differentiation method (DDM) and high precision direct (HPD) integration method is proposed for the sensitivity analysis of the objective function with respect to design variables. Firstly, the PEM is adopted to transform the sensitivity analysis under non-stationary random excitations into the sensitivity analysis under pseudo transient excitations. Then, the sensitivity analysis equation of the coupled system under pseudo transient excitations is derived based on the DDM. Moreover, the HPD integration method is used to efficiently solve the sensitivity analysis equation under pseudo transient excitations in a reduced-order modal space. Numerical examples are presented to demonstrate the validity of the proposed method.  相似文献   
3.
采用模压成型方法制备了2种柔软性不同的热塑性聚氨酯/短切碳纤维/碳纳米管(TPU/SCF-CNT)复合材料复制物, 其表面上具有倒金字塔微结构阵列, 内部有SCF与CNT共同构成的导电通路. 将复合材料复制物和相应的复合材料平整片封装成柔性传感器. 结果表明, 压力作用下传感器内复制物和平整片之间的接触电阻因倒金字塔底棱的形变而显著降低. 对使用柔软性较高的复合材料封装的传感器, 虽然其相对迟滞稍大, 但压力作用下倒金字塔底棱形变量较大, 且复制物和平整片内导电通路增加量较大, 因此其在0~2.5 kPa的线性区内具有较高的灵敏度(0.32 kPa?1). 制备的2种传感器均具有快速响应特性, 且能在500 s(约1580次)的循环压缩/释放测试(峰值压力约3 kPa)中保持较稳定的电阻响应. 研究表明, 利用模压成型的表面倒金字塔结构复合材料复制物封装成的柔性压力传感器具有良好的传感性能.  相似文献   
4.
5.
Solvent molecules can significantly reduce the heat of detonation and stability of energetic metal-organic framework (EMOF) materials, and the development of solvent-free EMOFs has become an effective strategy to prepare high-energy density materials. In this study, a solvent-free EMOF, [Ag2(DTPZ)]n (1) (N% = 32.58%), was synthesized by reacting a high-energy ligand, 2, 3-di(1H-tetrazol-5-yl)pyrazine (H2DTPZ), with silver ions under hydrothermal conditions, and it was structurally characterized by elemental analysis, infrared spectroscopy, X-ray diffraction, and thermal analysis. In 1, the DTPZ2− ligands that adopted a highly torsional configuration bridged the Ag+ ions in an octadentate coordination mode to form a three-dimensional framework (ρ = 2.812 g∙cm−3). The large steric effect and strong coordination ability of DTPZ2− effectively prevented the solvent molecules from binding with the metal centers or occupying the voids of 1. Moreover, the strong π-π stacking interactions [centroid-centroid distance = 0.34461(1) nm] between the tetrazole rings in different DTPZ2− ligands provided a high thermal stability to the framework (Te = 619.1 K, Tp = 658.7 K). Thermal analysis showed that a one-step rapid weight loss with intense heat release primarily occurred during the decomposition of 1, suggesting potential energetic characteristics. Non-isothermal thermokinetic analyses (based on the Kissinger and Ozawa-Doyle methods) were performed using differential scanning calorimetry to obtain the thermoanalysis kinetic parameters of the thermodecomposition of 1 (Ea = 272.1 kJ·mol−1, Eo = 268.9 kJ·mol−1; lgA =19.67 s−1). The related thermodynamic parameters [enthalpy of activation (ΔH = 266.9 kJ·mol−1), entropy of activation (ΔS = 125.4 J·mol−1·K−1), free energy of activation (ΔG = 188.3 kJ·mol−1)], critical temperature of thermal explosion (Tb = 607.1 K), and self-accelerating decomposition temperature (TSADT = 595.8 K) of the decomposition reaction were also calculated based on the decomposition peak temperature and extrapolated onset temperature when the heating rate approached zero. The results revealed that 1 featured good thermal safety, and its decomposition was a non-spontaneous entropy-driven process. The standard molar enthalpy for the formation of 1 was calculated to be (2165.99 ± 0.81) kJ·mol−1 based on its constant volume combustion energy determined using a precise rotating oxygen bomb calorimeter. Detonation and safety performance tests revealed that 1 was insensitive to impact and friction, and its heat of detonation (10.15 kJ·g−1) was higher than that of common ammonium nitrate explosives, such as octogen (HMX), hexogene (RDX), and 2, 4, 6-trinitrotoluene (TNT), indicating that 1 is a promising high-energy and insensitive material.  相似文献   
6.
ABSTRACT

Local sensitivity information is obtained for KKT points of parametric NLPs that may exhibit active set changes under parametric perturbations; under appropriate regularity conditions, computationally relevant generalized derivatives of primal and dual variable solutions of parametric NLPs are calculated. Ralph and Dempe obtained directional derivatives of solutions of parametric NLPs exhibiting active set changes from the unique solution of an auxiliary quadratic program. This article uses lexicographic directional derivatives, a newly developed tool in nonsmooth analysis, to generalize the classical NLP sensitivity analysis theory of Ralph and Dempe. By viewing said auxiliary quadratic program as a parametric NLP, the results of Ralph and Dempe are applied to furnish a sequence of coupled QPs, whose unique solutions yield generalized derivative information for the NLP. A practically implementable algorithm is provided. The theory developed here is motivated by widespread applications of nonlinear programming sensitivity analysis, such as in dynamic control and optimization problems.  相似文献   
7.
Electrogenerated silica thin films exhibiting a regular hexagonal packing of vertically‐aligned mesopore channels are promising for preconcentration electroanalysis. This work demonstrates the critical role of film thickness on their sensing performance using paraquat as a model analyte, based on mesoporous silica films prepared by electrochemically assisted self‐assembly performed for various deposition times. Films prepared with too short synthesis times (<10 s) led to deposits covering partially the electrode surface and suffered from rather poor sensing performance. Then, uniformly deposited films were obtained (between 10 and 15 s), and sensitivity rose up by increasing deposition times, whereas some limitations started to occur with much thicker films (>15 s deposition times) as a result of less electrochemically accessible paraquat accumulated far away from the electrode surface and restricted mass transport through the whole film thickness. These limitations were also confirmed on the basis of multi‐layered mesoporous silica films, suggesting a behavior that might be typical for other types of film‐modified electrodes.  相似文献   
8.
代渐雄  段忆翔 《分析化学》2016,(11):1686-1691
离子迁移谱仪的性能受到多种因素的影响,如漂移管电场强度离子门脉冲宽度、离子源工作条件、漂移管尺寸、离子门加工工艺和屏蔽网透过率等。在实际应用中需要对漂移管电场强度和离子门脉冲宽度进行调整以平衡灵敏度和分辨率。本研究详细研究了漂移管电场强度和离子门脉冲宽度对微波诱导等离子体离子迁移谱( MIPI-IMS)分辨率和灵敏度的影响。实验结果表明,存在一个最佳电场强度值使得分辨率达到最大,而且不同离子门脉冲宽度对应的最佳电场强度值不同;增大电场强度和离子门脉冲宽度有利于灵敏度的提升。与其它离子流较弱的离子源相比,离子流较大的微波诱导等离子体离子源在实际应用中对离子门脉冲宽度和漂移管电场强度有更多的选择。此研究结果有助于MIPI-IMS仪器性能的提升。将异丙醇用于测试MIPI-IMS的性能,结果表明,MIPI-IMS在保持较低检出限(7.7×10-11, V/V)的同时,分辨率可以达到66。  相似文献   
9.
Highly sensitive, selective, reliable and inexpensive cholesterol biosensors are highly demanded for the routine monitoring of cholesterol molecules in order to prevent heart failure incidents. In this study, Co3O4 nanostructures are synthesized using polyvinyl pyrrolidone surfactant as growth template by a low temperature aqueous chemical growth method. The morphology of nanostructures was investigated by scanning electron microscopy and X‐ray diffraction techniques. The nanostructures exhibit interconnected nanowires like morphology with interconnected network of nanowires. The nanostructures of Co3O4 are polycrystalline. The cholesterol oxidase was physically adsorbed on the interconnected nanowires of Co3O4 for the chemical sensing of cholesterol molecules. The sensor device detected a wide range of cholesterol from 1×10?7 M to 1×10?3 M concentrations with sensitivity of ?94.031 mV/decade. A detection limit of 0.035×10?7 M cholesterol concentration was observed and a fast response time of 10 s was also noticed. The fabricated device is highly stable, selective, sensitive, reproducible and repeatable. All the collected information about presented cholesterol biosensor indicates its potential application for the monitoring of cholesterol concentrations from human blood serum and real‐life samples.  相似文献   
10.
《Opto-Electronics Review》2019,27(3):233-240
In this paper, we theoretically analyze the slow-light π-phase-shifted fiber Bragg grating (π-FBG) and its applications for single and multipoint/quasi-distributed sensing. Coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modeling of slow-light π-FBG. The impact of slow-light FBG parameters, such as grating length (L), index change (Δn), and loss coefficient (α) on the spectral properties of π-FBG along with strain and thermal sensitivities are presented. Simulation results show that for the optimum grating parameters L = 50 mm, Δn = 1.5×10−4, and α = 0.10 m-1, the proposed slow-light π-FBG is characterized with a peak transmissivity of 0.424, the maximum delay of 31.95 ns, strain sensitivity of 8.380 με-1, and temperature sensitivity of 91.064 °C-1. The strain and temperature sensitivity of proposed slow-light π-FBG is the highest as compared to the slow-light sensitivity of apodized FBGs reported in the literature. The proposed grating have the overall full-width at half maximum (FWHM) of 0.2245 nm, and the FWHM of the Bragg wavelength peak transmissivity is of 0.0798 pm. The optimized slow-light π-FBG is used for quasi-distributed sensing applications. For the five-stage strain quasi-distributed sensing network, a high strain dynamic range of value 1469 με is obtained for sensors wavelength spacing as small as 2 nm. In the case of temperature of quasi-distributed sensing network, the obtained dynamic range is of 133 °C. For measurement system with a sufficiently wide spectral range, the π-FBGs wavelength grid can be broadened which results in substantial increase of dynamic range of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号