首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   2篇
  国内免费   18篇
化学   77篇
力学   8篇
物理学   8篇
  2023年   5篇
  2022年   11篇
  2021年   14篇
  2020年   11篇
  2019年   5篇
  2018年   1篇
  2017年   13篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   3篇
  2002年   1篇
排序方式: 共有93条查询结果,搜索用时 78 毫秒
1.
The aging of the global population has caused dentin exposure and root caries to become significant patient-management issues in clinical dentistry. Biomimetic remineralization, as a non-invasive therapeutic method, is of great significance to solve the problem. Herein, a novel biomimetic-mineralizing strategy to induce the self-healing of dentin defects with similar tooth structure was developed through the easy one-step polydopamine (PDA)-assisted co-deposition of polyacrylic acid (PAA) (denoted as PDA@PAA) in vitro. Immersing demineralized dentin into PAA and dopamine (DA) mixed solutions. Hereafter, the modified demineralized dentin was immersed in the supersaturated solution of calcium and phosphate at 37 °C at designated time. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflection fourier transform infrared (ATR-FTIR) were performed to analyze the interaction and co-deposition between PDA and PAA. The remineralization of demineralized dentin was characterized by field emission scanning electron microscope (FE-SEM), TEM, X-ray diffraction (XRD), friction and wear test, nanoindentation, acid resistance. And the cytocompatibility of PDA@PAA was evaluated by cell counting kit-8 (CCK-8) and cell morphology observation. The results that PAA inhibited further PDA polymerization and aggregation, PDA@PAA were co-deposited onto the surface of demineralized dentin matrix. SEM and TEM showed that the demineralized-dentin modified with PDA@PAA was completely remineralized at 12 h, not only the dentin tubules were occluded, but more importantly, the demineralized dentin collagen matrix was remineralized. Moreover, after mineralization for 24 h, a dense mineral layer similar to enamel structure was regenerated on the surface of dentin and closely combined with dentin. The results of mechanical properties and acid resistance suggested that the mechanical properties of the regenerated enamel-like structure are close to that of enamel, and its acid resistance is better than that of enamel. This study demonstrated that the PDA-assisted co-deposition of PAA can offer an inexpensive, rapid, and efficient strategy for the management of illnesses related to exposed and demineralized dentin.  相似文献   
2.
Advanced additive manufacturing actively widens its tool box of wettability-related phenomena to be used in production of new items. Novel self-healing engineering materials incorporate vascular networks with two types of nanochannels: the one containing a resin monomer, whereas another one — a curing agent. If such nanocomposites are damaged locally, both types of channels are locally broken, and they release resin monomer and curing agent droplets. These droplets spread by wettability over the nanotextured matrix, touch each other, and coalesce, which triggers polymerization reaction and crack stitching. Wettability-facilitated droplet spreading is accompanied by liquid imbibition in the pores in the nanofiber network. Such process peculiarities are in focus in the present review. An additional process relevant in direct writing and 3D printing is electrowetting (EW). It stems from the change in the contact angle in response to the electric polarization of dielectric substrates. EW allows movement of droplets on horizontal, vertical, and inverse surfaces, which can significantly facilitate the existing direct writing and 3D printing technologies. Accordingly, EW is also in focus in the present review.  相似文献   
3.
A chitosan-based biocompatible self-healing hydrogel has been facilely prepared and used for bioapplications.  相似文献   
4.
谢续明 《高分子科学》2017,35(10):1253-1267
Multi-bond network(MBN) which contains a single network with hierarchical cross-links is a suggested way to fabricate robust hydrogels. In order to reveal the roles of different cross-links with hierarchical bond energy in the MBN, here we fabricate poly(acrylic acid) physical hydrogels with dual bond network composed of ionic cross-links between carboxylFe3+ interactions and hydrogen bonds, and compare these dually cross-linked hydrogels with singly and ternarily cross-linked hydrogels. Simple models are employed to predict the tensile property, and the results confirm that the multi-bond network with hierarchical distribution in the bond energy of cross-links endows hydrogel with effective energy-dissipating mechanism. Moreover, the dually cross-linked MBN gels exhibit excellent mechanical properties(tensile strength up to 500 k Pa, elongation at break ~ 2400%) and complete self-healing after being kept at 50 °C for 48 h. The factors on promoting self-healing are deeply explored and the dynamic multi-bonds are regarded to trigger the self-healing along with the mutual diffusion of long polymer chains and ferric ions.  相似文献   
5.
首先采用溶液共混法制备出石墨烯-碳纳米管(G-CNT)/聚氨酯(TPU)复合材料,然后通过拉伸实验及扫描电子显微镜(SEM)表征来考察该材料的拉伸强度和微波自修复特性,并从力学及材料与微波之间的相互作用等角度对其拉伸强度增强和微波修复机理进行研究.结果表明:在拉伸强度方面,与单一的石墨烯或CNT增强TPU相比,G-CNT之间形成的协同效应使TPU拉伸强度得到进一步提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU抗拉强度较纯TPU提高了67%,较G/TPU提高了18%,较CNT/TPU提高了25%;在材料裂纹的微波修复方面,石墨烯和CNT之间的协同效应使TPU材料自修复效果得到有效提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU修复效果达到最高值117%.  相似文献   
6.
鲁路  周长忍 《高分子科学》2016,34(2):185-194
Herein, we present a novel way for the production of self-healing hydrogels with stretch beyond 4200% than their initial length and relatively high tensile strength(0.1?0.25 MPa). Furthermore, the hydrogel was insensitive to notch. Even for the samples containing V-notches, a stretch of 2300% was demonstrated. The hydrogels were developed by in situ crosslinking of the self-assembled colloidal poly(acrylic acid)(PAA)/functionalized polyhedral oligomeric silsesquioxane(POSS) micelles. This was achieved by the addition of functionalized polyhedral oligomeric silsesquioxane with tertiary amines and hydroxyls(POSS-AH) into the PAA reaction solution. The POSS-AH led to micellar growth, then the dualcrosslinked network was constructed. One type of crosslink was formed by hydrogen-bonding and ionic interactions between PAA chains and POSS-AH, the other type of crosslink was formed by covalent bonds between PAA and bis(N,N'-methylenebis-acrylamide).  相似文献   
7.
We have prepared polyion complex (PIC) hydrogel consisting of poly(3-(methacryloylami no) propyl-trimethylamonium chloride) and poly(sodium p-styrenesulfonate) polyelectrolytes via a two-step polymerization procedure and have investigated specific ion effects on the selfhealing of the PIC hydrogel. Our study demonstrates that the mechanical properties of the PIC hydrogel are strongly dependent on the type of the ions doped in the hydrogel. The ion-specific effects can be used to modulate the self-healing efficiency of the PIC hydrogel. As the doped anions change from kosmotrops to chaotropes, the self-healing efficiency of the PIC hydrogel increases. A more chaotropic anion has a stronger ability to break the ionic bonds formed within the hydrogel, leading to a higher efficiency during the healing.  相似文献   
8.
Textile reinforce cements (TRC) are innovative materials that are used for repair of existing structures or recently as stand-alone lightweight structural members. Fracture and thermal behavior of these materials are very complicated due to multiple failure modes. The undergoing processes cannot be described by the simple constitutive equation. In this perspective the contribution of monitoring techniques is crucial. Acoustic emission (AE) is used to check the behavior of TRC beams and plates in different states of structural health: intact, thermally pre-cracked and self-healed by polymer powder. This is the first time that the AE behaviors of intact, cracked and self-healed TRC laminates are compared in literature.  相似文献   
9.
In the present study, the sulfobetaine-based copolymer bearing a dopamine functionality showed gel formation adjusted by the application of metal salts for gelation and various values of pH. Normally, the liquid-like solution of the sulfobetaine-based copolymer and metal cross-linkers is transformed to a gel-like state upon increasing the pH values in the presence of Fe3+ and Ti3+. Metal-induced coordination is reversible by means of the application of EDTA as a chelating agent. In the case of Ag+ ions, the gel is formed through a redox process accompanied with the oxidative coupling of the dopamine moieties and Ag0 particle formation. Mussel-mimicking and metal-dependent viscoelastic properties were observed for Fe3+, Ti3+, and Ag+ cross-linking agents, with additionally enhanced self-healing behavior in comparison with the covalently cross-linked IO4 analogues. Antibacterial properties can be achieved both in solution and on the surface using the proper concentration of Ag+ ions used for gelation; thus, a tunable amount of the Ag0 particles are formed in the hydrogel. The cytotoxicity was elucidated by the both MTT assay on the NIH/3T3 fibroblast cell line and direct contact method using human dermal fibroblast cell (F121) and shows the non-toxic character of the synthesized copolymer.  相似文献   
10.
The present paper reports on a numerical simulation and experimental validation of fluid flow and conjugate heat transfer characteristics of new vascular channels, whose cross-sections are semi-circular. The numerical analysis covers the Reynolds number range of 30−2000, with a cooling channel volume fraction of 0.04, pressure drop range of 30−105 Pa. Six flow configurations were considered: first, second, and third constructal structures with optimized hydraulic diameters and non-optimized hydraulic diameter for each system size 10 × 10, 20 × 20, and 50 × 50, respectively. The numerical results of the proposed vascular channels show that the channel configurations of the optimized constructs show much lower flow resistance and temperature distribution than those of the non-optimized constructs. It is also shown that the power component in the power-law relationship between mass flow rate and pressure drop decreases as the system size and mass flow rates increase. The numerical results are validated by experimental data, and with the two exhibiting excellent agreement in all cases. The validation study against the experimental data shows that the presented numerical model is a reliable tool for predicting the performance of cooling plates under practical operating conditions and for the design of self healing or cooling system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号