首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   1篇
  物理学   4篇
  2017年   1篇
  2016年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 171 毫秒
1
1.
徐遥 《应用声学》2017,25(7):63-65, 69
针对较强噪声环境下的滚动轴承故障预测问题,为提高轴承故障预测的精度,提出并研究了一种新的滚动轴承预测技术。采用将灰色模型和极限学习机(ELM)相结合的方法,针对轴承运行状态值的非线性特点,先将样本数据进行灰色处理,解决数据的随机性和波动性问题,然后代入学习速度快,泛化精度高的ELM神经网络进行训练。在训练完毕后,对未来的轴承运行状态数据进行分析,将其与轴承设备的理论诊断标准相比较以达到故障预测的目的。  相似文献
2.
Continuous online monitoring of rotating machines is necessary to assess real-time health conditions so as to enable early detection of operation problems and thus reduce the possibility of downtime. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings, comprises four main stages which are, statistical analysis, fault diagnostics, defect size calculation, and prognostics. In this paper the effect of defect size, operating speed, and loading conditions on statistical parameters of acoustic emission (AE) signals, using design of experiment method (DOE), have been investigated to select the most sensitive parameters for diagnosing incipient faults and defect growth on rolling element bearings. A modified and effective signal processing algorithm is designed to diagnose localized defects on rolling element bearings components under different operating speeds, loadings, and defect sizes. The algorithm is based on optimizing the ratio of Kurtosis and Shannon entropy to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope detection. Results show the superiority of the developed algorithm and its effectiveness in extracting bearing characteristic frequencies from the raw acoustic emission signals masked by background noise under different operating conditions. To experimentally measure the defect size on rolling element bearings using acoustic emission technique, the proposed method along with spectrum of squared Hilbert transform are performed under different rotating speeds, loading conditions, and defect sizes to measure the time difference between the double AE impulses. Measurement results show the power of the proposed method for experimentally measuring size of different fault shapes using acoustic emission signals.  相似文献
3.
4.
李常有  徐敏强  郭耸 《应用声学》2008,27(4):315-320
旋转机械在运行过程中产生的声信号包含了滚动轴承的运行状态信息,且可采用非接触式测量,本文应用它对滚动轴承进行故障诊断。基于morlet小波变换的包络分析对采集的声信号进行降噪及包络处理,然后变换到频域,提取出特征频率并经过转换后作为线性神经网路的输入向量,辨识滚动轴承的状态。实验表明,本方法对滚动轴承故障诊断是有效的。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号