首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   12篇
  国内免费   116篇
化学   1131篇
晶体学   2篇
数学   63篇
物理学   100篇
  2023年   106篇
  2022年   8篇
  2021年   23篇
  2020年   22篇
  2019年   49篇
  2018年   51篇
  2017年   30篇
  2016年   12篇
  2015年   12篇
  2014年   44篇
  2013年   101篇
  2012年   33篇
  2011年   62篇
  2010年   45篇
  2009年   71篇
  2008年   67篇
  2007年   82篇
  2006年   89篇
  2005年   80篇
  2004年   75篇
  2003年   29篇
  2002年   25篇
  2001年   11篇
  2000年   19篇
  1999年   12篇
  1998年   16篇
  1997年   11篇
  1996年   17篇
  1995年   10篇
  1994年   11篇
  1993年   15篇
  1992年   6篇
  1991年   6篇
  1990年   9篇
  1989年   4篇
  1988年   4篇
  1987年   9篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有1296条查询结果,搜索用时 16 毫秒
1.
Hydrodynamic cavitation experiments in microfluidic systems have been performed with an aqueous solution of luminol as the working fluid. In order to identify where and how much reactive radical species are formed by the violent bubble collapse, the resulting chemiluminescent oxidation reaction of luminol was scrutinized downstream of a constriction in the microchannel. An original method was developed in order to map the intensity of chemiluminescence emitted from the micro-flow, allowing us to localize the region where radicals are produced. Time averaged void fraction measurements performed by laser induced fluorescence experiments were also used to determine the cavitation cloud position. The combination void fraction and chemiluminescence two-dimensional mapping demonstrated that the maximum chemiluminescent intensity area was found just downstream of the cavitation clouds. Furthermore, the radical yield can be obtained with our single photon counting technique. The maximum radical production rates of 1.2*107 OH/s and radical production per processed liquid volume of 2.15*1010 HO/l were observed. The proposed technique allows for two-dimensional characterisation of radical production in the microfluidic flow and could be a quick, non-intrusive way to optimise hydrodynamic cavitation reactor design and operating parameters, leading to enhancements in wastewater treatments and other process intensifications.  相似文献   
2.
Ammonia, NH3, is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber–Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2. This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4+, the acidic form of NH3. EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2B radicals.  相似文献   
3.
Systematic reaction path exploration revealed the entire mechanism of Knowles's light-promoted catalytic intramolecular hydroamination. Bond formation/cleavage competes with single electron transfer (SET) between the catalyst and substrate. These processes are described by adiabatic processes through transition states in an electronic state and non-radiative transitions through the seam of crossings (SX) between different electronic states. This study determined the energetically favorable SET path by introducing a practical computational model representing SET as non-adiabatic transitions via SXs between substrate's potential energy surfaces for different charge states adjusted based on the catalyst's redox potential. Calculations showed that the reduction and proton shuttle process proceeded concertedly. Also, the relative importance of SET paths (giving the product and leading back to the reactant) varies depending on the catalyst's redox potential, affecting the yield.  相似文献   
4.
The syntheses and magnetic properties of organometallic heterometallic compounds [K(THF)6]{CoI[(μ3-HAN)RE2Cp*4]2} ( 1-RE ) and [K(Crypt)]2{CoI[(μ3-HAN)RE2Cp*4]2} ( 2-RE ) containing hexaazatrinaphthylene radicals (HAN⋅3−) and four rare earth (RE) ions are reported. 1-RE shows isolable species with ligand-based mixed valency as revealed by cyclic voltammetry (CV) thus leading to the isolation of 2-RE via one-electron chemical reduction. Strong electronic communication in mixed-valency supports stronger overall ferromagnetic behaviors in 2-RE than 1-RE containing Gd and Dy ions. Ac magnetic susceptibility data reveal 1-Dy and 2-Dy both exhibit slow magnetic relaxation. Importantly, larger coercive field was observed in the hysteresis of 2-Dy at 2.0 K, indicating the enhanced SMM behavior compared with 1-Dy . Ligand-based mixed-valency strategy has been used for the first time to improve the magnetic coupling in lanthanide (Ln) SMMs, thus opening up new ways to construct strongly coupled Ln-SMMs.  相似文献   
5.
The use of ynamides in organic synthesis has gained significant attention due to their ability to provide access to complex molecular structures through transformations such as 1,2-difunctionalization and annulation reactions. These reactions enable the formation of highly functionalized N-bearing olefins and unusual N-bearing heterocycles. In this minireview, we present a systematic overview of the regioselective difunctionalization and annulation reactions of ynamides. We discuss the multi-component reactions, and radical-triggered functionalizations across the ynamides carbon–carbon multiple bonds and the use of bifunctional reagents in annulation of ynamides, highlighting their potential in expanding the substrate scope. Furthermore, we provide insights into the mechanistic breakthroughs that have been achieved in recent years in the development of these reactions. Finally, we emphasize the promising future prospects of ynamides as versatile building blocks for the synthesis of complex molecular architectures.  相似文献   
6.
Photocatalytic biomass conversion into high-value chemicals and fuels is considered one of the hottest ongoing research and industrial topics toward sustainable development. In short, this process can cleave Cβ−O/Cα−Cβ bonds in lignin to aromatic platform chemicals, and further conversion of the polysaccharides to other platform chemicals and H2. From the chemistry point of view, the optimization of the unique cooperative interplay of radical oxidation species (which are activated via molecular oxygen species, ROSs) and substrate-derived radical intermediates by appropriate control of their type and/or yield is key to the selective production of desired products. Technically, several challenges have been raised that face successful real-world applications. This review aims to discuss the recently reported mechanistic pathways toward selective biomass conversion through the optimization of ROSs behavior and materials/system design. On top of that, through a SWOT analysis, we critically discussed this technology from both chemistry and technological viewpoints to help the scientists and engineers bridge the gap between lab-scale and large-scale production.  相似文献   
7.
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2 (Ar=2,6-dimethylphenyl) ( 1 2) was transformed to a triply negatively charged species 1 23.−, which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 1 23.− features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 1 23.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.  相似文献   
8.
Piezocatalysis offers a means to transduce mechanical energy into chemical potential, harnessing physical force to drive redox reactions. Working in the solid state, we show here that piezoelectric BaTiO3 nanoparticles can transduce mechanical load into a flux of reactive radical species capable of initiating solid state free radical polymerization. Activation of a BaTiO3 powder by ball milling, striking with a hammer, or repeated compressive loading generates highly reactive hydroxyl radicals (⋅OH), which readily initiate radical chain growth and crosslinking of solid acrylamide, acrylate, methacrylate and styrenic monomers. Control experiments indicate a critical role for chemisorbed water on the BaTiO3 nanoparticle surface, which is oxidized to ⋅OH via mechanoredox catalysis. The force-induced production of radicals by compressing dry piezoelectric materials represents a promising new route to harness mechanical energy for solid state radical synthesis.  相似文献   
9.
Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3-rich small molecules. The ability of boron-containing functional groups to modify the reactivity of α-radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p-orbitals have a significant stabilizing effect on α-radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N-methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α-radicals via σB-N hyperconjugation in a manner that allows site-selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α-radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p-orbitals, but that hyperconjugation of tetrahedral boron-containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α-carbon.  相似文献   
10.
In this work, we aimed to develop a dicyanomethyl radical that undergoes both reversible C−C bond formation/dissociation and metal-ligand coordination reactions to combine dynamic covalent chemistry (DCC) based on organic radicals with coordination chemistry. We have previously reported a dicyanomethyl radical conjugated with a triphenylamine ( 1 ⋅) that exhibits a monomer/dimer equilibrium between the σ-bonded dimer ( 12 ). We designed and synthesized a novel dicyanomethyl radical with a pyridyl group as a coordination point ( 2 ⋅) by replacing the phenyl group of 1 ⋅ with a 3-pyridyl group. We showed that 2 ⋅ is also in an equilibrium with the σ-bonded dimer ( 22 ) in solution and has suitable thermodynamic parameters for application in DCC. 22 coordinates to PdCl2 in a 2 : 2 ratio to selectively form a metallamacrocycle ( 22 )2(PdCl2)2, and its structure was clarified by single crystal X-ray analysis. Variable-temperature NMR, ESR, and electronic absorption measurements revealed that ( 22 )2(PdCl2)2 also undergoes the reversible C−C bond formation/dissociation reaction. Ligand-exchange experiment showed that 22 was liberated from ( 22 )2(PdCl2)2 by the addition of another ligand with a higher affinity for PdII. This work demonstrated that DCC based on dicyanomethyl radicals works orthogonally to metal-ligand coordination reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号