首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   5篇
  国内免费   1篇
力学   10篇
数学   47篇
物理学   22篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有79条查询结果,搜索用时 46 毫秒
1.
Interaction of forced and self-sustained vibrations of one disk rotor is described by nonlinear finite-degree-of-freedom dynamical system. The shaft of the rotor is supported by two journal bearings. The combination of the shooting technique and the continuation algorithm is used to study the rotor periodic vibrations. The Floquet multipliers are calculated to analyze periodic vibrations stability. The results of periodic motions analysis are shown on the frequency response. The quasi-periodic motions are investigated. These nonlinear vibrations coexist with the periodic forced vibrations.  相似文献   
2.
利用常规材料构造了Fibonacci序列准周期结构,运用传输矩阵法研究了该结构的空间传输特性,并基于该结构优良的空间传输特性设计了小角度低通空间滤波器.数值模拟结果表明,该小角度空间滤波器的角域带宽可通过改变序列的结构类型和序列数来调谐,其调谐规律为:随着Fibonacci序列F(m,1)中m值的增加,对应空间滤波器的角域带宽减小;随着序列数的增大,对应角域带宽也减小.在调谐的基础上,还可通过改变构成准周期结构的介质折射率参量来精确调节其角域带宽.相比于基于超材料的小角度空间滤波器而言,基于Fibonacci序列的小角度空间滤波器制备更简单,且有望应用于新一代的高功率激光系统中.  相似文献   
3.
This paper brings a comparative analysis between dynamic models of couple-stress elastic materials and structured Rayleigh beams on a Winkler foundation. Although physical phenomena have different physical origins, the underlying equations appear to be similar, and hence mathematical models have a lot in common. In the present work, our main focus is on the analysis of dispersive waves, band-gaps and localised waveforms in structured Rayleigh beams. The Rayleigh beam theory includes the effects of rotational inertia which are neglected in the Euler–Bernoulli beam theory. This makes the approach applicable to higher frequency regimes. Special attention is given to waves in pre-stressed Rayleigh beams on elastic foundations.  相似文献   
4.
In this article, we study the plasmonic resonance of infinite photonic crystal mounted by the double negative nanoparticles in two dimensions. The corresponding physical model is described by the Helmholz equation with so called Bloch wave condition in a periodic domain. By using the quasi-periodic layer potential techniques and the spectral theorem of quasi-periodic Neumann–Poincaré operator, the quasi-static expansion of the near field in the presence of nanoparticles is derived. Furthermore, when the magnetic permeability of nanoparticles satisfies the Drude model, we give the conditions under which the plasmonic resonance occurs, and the rate of blow up of near field energy with respect to nanoparticle's bulk electron relaxation rate and filling factor are also obtained. It indicates that one can appropriately control the bulk electron relaxation rate or filling factor of nanoparticle in photonic crystal structure such that the near field energy attains its maximum, and enhancing the efficiency of energy utilization.  相似文献   
5.
We consider CMV matrices, both standard and extended, with analytic quasi-periodic Verblunsky coefficients and prove Anderson localization in the regime of positive Lyapunov exponents. This establishes the CMV analog of a result Bourgain and Goldstein proved for discrete one-dimensional Schrödinger operators. We also prove a similar result for quantum walks on the integer lattice with suitable analytic quasi-periodic coins.  相似文献   
6.
We study quasi-periodic tori under a normal-internal resonance, possibly with multiple eigenvalues. Two non-degeneracy conditions play a role. The first of these generalizes invertibility of the Floquet matrix and prevents drift of the lower dimensional torus. The second condition involves a Kolmogorov-like variation of the internal frequencies and simultaneously versality of the Floquet matrix unfolding. We focus on the reversible setting, but our results carry over to the Hamiltonian and dissipative contexts.  相似文献   
7.
8.
The aim of the present paper is to examine the effect of a quasi-periodic gravitational modulation on the onset of convective instability in Hele-Shaw cell. The quasi-periodic modulation considered here consists in a modulation having two incommensurate frequencies. This study is an extension of a previous work by Aniss et al. [Asymptotic study of the convective parametric instability in Hele-Shaw cell, Phys. Fluids 12 (2) (2000) 262-268] in which only a periodic gravitational modulation was considered. We have shown that for Pr=O(1) or Pr?1, the gravitational modulation has no effect on the convective threshold as expected. However, for Pr=O(ε2), it turns out that a modulation with two incommensurate frequencies has a stabilizing or a destabilizing effect strongly depending on the frequencies ratio.  相似文献   
9.
This paper gives lower estimates for the frequency modules of almost periodic solutions to equations of the form , where A generates a strongly continuous semigroup in a Banach space , F(t,x) is 2π-periodic in t and continuous in (t,x), and f is almost periodic. We show that the frequency module ℳ(u) of any almost periodic mild solution u of (*) and the frequency module ℳ(f) of f satisfy the estimate e 2π iℳ(f)e 2π iℳ(u). If F is independent of t, then the estimate can be improved: ℳ(f)⊂ℳ(u). Applications to the nonexistence of quasi-periodic solutions are also given.  相似文献   
10.
A hierarchy of new nonlinear evolution equations, which are composed of the positive and negative AKNS flows, is proposed. On the basis of the theory of algebraic curves, the corresponding flows are straightened using the Abel-Jacobi coordinates. The meromorphic function ?, the Baker-Akhiezer vector , and the hyperelliptic curve Kn are introduced and, by using these, quasi-periodic solutions of the first three nonlinear evolution equations in the hierarchy are constructed according to the asymptotic properties and the algebro-geometric characters of ?, and Kn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号