首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8927篇
  免费   1049篇
  国内免费   186篇
化学   7370篇
晶体学   9篇
力学   28篇
综合类   4篇
数学   26篇
物理学   2725篇
  2023年   71篇
  2022年   97篇
  2021年   185篇
  2020年   337篇
  2019年   263篇
  2018年   231篇
  2017年   171篇
  2016年   356篇
  2015年   338篇
  2014年   436篇
  2013年   670篇
  2012年   408篇
  2011年   485篇
  2010年   380篇
  2009年   452篇
  2008年   435篇
  2007年   486篇
  2006年   433篇
  2005年   365篇
  2004年   316篇
  2003年   334篇
  2002年   152篇
  2001年   122篇
  2000年   127篇
  1999年   114篇
  1998年   111篇
  1997年   86篇
  1996年   88篇
  1995年   113篇
  1994年   56篇
  1993年   53篇
  1992年   42篇
  1991年   40篇
  1990年   28篇
  1988年   23篇
  1987年   24篇
  1985年   92篇
  1984年   117篇
  1983年   106篇
  1982年   149篇
  1981年   113篇
  1980年   97篇
  1979年   100篇
  1978年   106篇
  1977年   144篇
  1976年   118篇
  1975年   129篇
  1974年   164篇
  1973年   131篇
  1972年   82篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The imidazo[1,2‐a]pyridines are an important target in organic synthetic chemistry and have attracted critical attention of chemists mainly due to the discovery of the interesting properties exhibited by a great number of imidazo[1,2‐a]pyridine derivatives. Although lots of synthetic methods of imidazo[1,2‐a]pyridines have been developed in the past years, the chemistry community faces continuing challenges to use green reagents, maximize atom economy and enrich the functional group diversity of product. Undoubtedly, with its low cost and lack of environmentally hazardous byproducts, cascade reactions and C?H functionalizations are ideal strategies for this field. In this record we highlight some of our progress toward the goal to synthesis of imidazo[1,2‐a]pyridine derivatives through carbene transformations or C?H functionalizations.  相似文献   
2.
In this work, a novel, convenient, and efficient approach to the synthesis of pyrano[2,3-h]coumarins has been reported based on the multicomponent reaction. The one-pot reaction between 5,7-dihydroxy-4-methylcoumarin, dialkyl acetylenedicarboxylate and aromatic aldehydes catalyzed by sodium carbonate lead to the formation of a novel class of pyrano[2,3-h]coumarin derivatives. High atom-economy, excellent yields, simple procedure, and mild reaction conditions are the important features of this protocol. This method allows access to a variety of pyrano[2,3-h]coumarins via using a broad substrate scope.  相似文献   
3.
Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields. In this study, we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al metal oxides (represented as Zn2ZrxAl-MMO) in light of the structural topotactic transformation of Zn2ZrxAl-hydrotalcite precursors (Zn2ZrxAl-LDH). The resulting Zn2ZrxAl-MMO catalysts were employed in the conversion of ethanol to diethyl carbonate. The Zr4+ ion content of the LDH precursor plays a key role in modulating the acid-base properties and determining catalytic performance: the Zn2Zr0.1Al-MMO sample exhibits the optimal catalytic behavior with a diethyl carbonate (DEC) yield of 42.1%, which is the highest reported for metal oxide catalysts. Structure-property correlation investigations revealed that the synergic catalysis between medium-strong basic sites and weak acid sites plays a predominant role in the catalytic behavior. Furthermore, in situ Fourier transform infrared measurements showed that the weak acidic site promotes activation adsorption of the reactant (urea) and the intermediate product (ethyl carbamate), while the medium-strong basic site accelerates ethanol activation. Moreover, the Zn2Zr0.1Al-MMO catalyst has the advantages of cost effectiveness, good stability, and reusability. Therefore, the acid-base bifunctional catalysts developed in this work can be employed as promising candidates in acid-base catalytic reactions such as ethanol conversion.  相似文献   
4.
A new protocol based on lipase-catalyzed tandem reaction toward α,β-enones/enoesters is presented. For the synthesis of the desired products the tandem process based on enzyme-catalyzed hydrolysis and Knoevenagel reaction starting from enol acetates and aldehyde is developed. The relevant impact of the reaction conditions including organic solvent, enzyme type, and temperature on the course of the reaction was revealed. It was shown that controllable release of the active methylene compound from the corresponding enol carboxylate ensured by enzymatic reaction diminishes significantly the formation of the unwanted co-products. Furthermore, this protocol was extended by including a second tandem chemoenzymatic transformation engaging various aldehyde precursors. After a careful optimization of the reaction conditions, the target products were obtained with yields up to 86 % and with excellent E/Z-selectivity.  相似文献   
5.
Thiouracil‐containing depsipeptides were produced via one‐pot four‐component condensation/Passerini tandem reaction of thiouracil, 2‐chloroacetic acid derivatives, ketones, and isocyanides in ionic liquid as green reaction media in high yields.  相似文献   
6.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
7.
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA‐related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.  相似文献   
8.
P450 119 peroxygenase was found to catalyze the sulfoxidation of thioanisole and the sulfonation of sulfoxide in the presence of tert-butyl hydroperoxide (TBHP) for the first time with turnover rates of 1549 min−1 and 196 min−1 respectively. Several mutants were designed to improve the peroxygenation activity and thioanisole specificity by site-directed mutagenesis. The F153G/T213G mutant gave an increase of sulfoxide yield and a decrease of sulfone yield. Moreover the S148P/I161T/K199E/T214V mutant and the K199E mutant with acidic Glu residue contributed to improving the product ratio of sulfoxide to sulfone. Addition of short-alkyl-chain organic acids to the P450 119 peroxygenase-catalyzed sulfur oxidation of thioanisole was investigated. Octanoic acid was found to induce a preferred sulfoxidation of thioanisole catalyzed by the F153G/T213G mutant to give approximately 2.4-fold increase in turnover rate with a kcat value of 3687 min−1 relative to that of the wild-type, and by the F153G mutant to give the R-sulfoxide up to 30 % ee. The experimental control and the proposed mechanism for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole in the presence of octanoic acid suggested that octanoic acid could partially occupy the substrate pocket; meanwhile the F153G mutation could enhance the substrate specificity, which could lead to efficiently regulate the spatial orientation of thioanisole and facilitate the formation of Compound I. This is the most effective catalytic system for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole.  相似文献   
9.
A gas-phase investigation of the D -fructose dehydration reaction in the presence of base has been performed by the joint application of mass spectrometric techniques and theoretical calculations. Protonated addition products of D -fructose and base were generated in the gas phase by electrospray ionization using several bases of different proton affinity. The intermediates, products and decomposition channels were investigated by ion trap mass spectrometry. Electronic structure calculations allowed the identification of the ionic intermediates and products of a selected system containing NH3, helping to rationalize the observed reaction pathways. The obtained results show that the final product, the protonated 5-hydroxymethyl-2-furaldheyde [5-HMF]H+, is better formed using selected bases and only if these remain clustered until the end of the dehydration process.  相似文献   
10.
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and N?‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking N?‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号