首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   12篇
  国内免费   14篇
化学   474篇
力学   7篇
综合类   2篇
数学   23篇
物理学   110篇
  2023年   21篇
  2022年   20篇
  2021年   21篇
  2020年   8篇
  2019年   18篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   19篇
  2014年   14篇
  2013年   32篇
  2012年   26篇
  2011年   30篇
  2010年   17篇
  2009年   40篇
  2008年   30篇
  2007年   29篇
  2006年   20篇
  2005年   24篇
  2004年   35篇
  2003年   24篇
  2002年   13篇
  2001年   10篇
  2000年   11篇
  1999年   17篇
  1998年   12篇
  1997年   18篇
  1996年   5篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有616条查询结果,搜索用时 15 毫秒
1.
2.
3.
Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.  相似文献   
4.
Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided. This multicomponent process provides access to a new chemical space of pyrazole amide derivatives and offers a tool for peptide modification and stapling.  相似文献   
5.
6.
Protein extraction for two‐dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two‐dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one‐dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77–95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants.  相似文献   
7.
The societal cost of micronutrient deficiency (MND) or the “hidden hunger” is in millions of dollars/year, reducing the GDP of some countries by as much as 11%. Zn is an important micronutrient for both plants and animals. An estimated 17% of the world population, or around 1.1 billion people, are at the risk of zinc (Zn) deficiency. The deficiency has been related to adverse pregnancy outcomes, stunted growth, premature deaths, immune system dysfunctions, neuro-behavioral disorders, and recently with the failure to recover from COVID-19. These health risks associated with Zn deficiency have compelled FAO and WHO to recommend Zn fortification of diet. Correcting Zn deficiency is a challenge due to several reasons. Close to half of the agricultural soils are Zn deficient, and chemical Zn fertilizers are costly and ineffective. Developing Zn-rich crops through plant breeding and genetic engineering is challenging. Zn-dense diet is costly and cannot be implemented in the low-income region most affected by Zn deficiency. Lack of consensus among regulatory bodies on defining and diagnosing Zn deficiency in plants and Humans. Awareness and other sociocultural issues. Among the most important available solutions are zinc biofortification of the cereal crops, use of zinc biofertilizers, development of Zn-efficient crops with reduced phytate content. The use of Zn supplements, dietary modification, and diversification, especially with fish, are proposed as the most accessible and affordable solutions. Awareness programs in areas suffering the most from Zn deficiency are required. Despite the suggestions from FAO and WHO, global efforts to combat Zn deficiency matching those for combating diseases like HIV are not in place. Coordinated efforts of the international community, especially policy-makers, agricultural scientists, dieticians, physicians, and others, are required to address the issue of hidden hunger.  相似文献   
8.
Understanding the air-water and oil-water interfacial behavior of plant proteins is crucial for developing stable emulsions and foams in food systems. Plant crops are often processed into protein extracts with high purity, which primarily consist of globulins. These globulins are often unable to form stiff interfacial layers owing to their compact and highly aggregated state and have inferior functionality compared with animal-derived proteins from milk or eggs. Much of the current focus is on modifying these proteins, whereas better interface stabilizing functionality can also be obtained by choosing more targeted protein extraction methods. This review will highlight the benefits and drawbacks of current and novel protein sources and protein extraction methods with respect to interfacial properties.  相似文献   
9.
王时雨  李明华  薛姗姗  何炜  黄雁茹 《化学通报》2017,80(11):1002-1008
氮氧自由基化合物是指含碳、氮、氧、氢等元素以及自旋单电子的有机化合物,因其自身的特殊性质被广泛应用于很多领域。本文结合氮氧自由基的特点,对其在生物学、磁性、有机催化和阻聚等方面的应用研究进行了总结,并对氮氧自由基化合物的发展趋势进行了展望。  相似文献   
10.
《中国化学会会志》2017,64(10):1164-1171
A green biogenic, nontoxic, high‐yielding synthetic method is introduced for the synthesis of silver nanoparticles (AgNPs) using ionic‐liquid‐based, microwave‐assisted extraction (ILMAE) from Polygonum minus . The aqueous ionic liquid (1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl)‐based plant extract was used as reducing agent to reduce silver ions to AgNPs. The synthesis of AgNPs was confirmed by UV–visible spectrophotometry. Fourier transforms infrared (FTIR) spectra showed that the plant bioactive compounds capped the AgNPs. The particle size and morphology of Ag NPs were characterized by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM), respectively. Elemental analysis was carried out by energy‐dispersive X‐ray (EDX) spectroscopy. Photodegradation studies showed that the AgNPs degraded 98% of methylene blue in 12 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号