首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   168篇
  国内免费   49篇
化学   202篇
晶体学   10篇
力学   229篇
综合类   9篇
数学   44篇
物理学   524篇
  2024年   3篇
  2023年   21篇
  2022年   17篇
  2021年   20篇
  2020年   17篇
  2019年   16篇
  2018年   12篇
  2017年   19篇
  2016年   32篇
  2015年   25篇
  2014年   78篇
  2013年   47篇
  2012年   79篇
  2011年   63篇
  2010年   40篇
  2009年   51篇
  2008年   40篇
  2007年   54篇
  2006年   33篇
  2005年   47篇
  2004年   37篇
  2003年   41篇
  2002年   23篇
  2001年   32篇
  2000年   18篇
  1999年   17篇
  1998年   20篇
  1997年   28篇
  1996年   19篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1018条查询结果,搜索用时 18 毫秒
1.
Nanogenerators, as the typical conversion of mechanical energy to electrical energy devices, have great potential in the application of providing sustainable energy sources for powering miniature devices. In this work, cellulose acetate/cellulose nanocrystal(CA/CNC) composite nanofiber membranes were prepared by electrospinning method and then utilized to manufacture a flexible pressure-driven nanogenerator. The addition of CNC not only increased the content of piezoelectric cellulose I crystallization but also strengthened the mechanical deformation of the nanofiber membranes, which could greatly enhance the piezoelectric performance of CA/CNC composite membranes. The CA/CNC composite nanofiber membrane with 20%(mass fraction) of CNC(CA/CNC-20%) showed optimal piezoelectric conversion performance with the output voltage of 1.2 V under the force of 5 N(frequency of 2 Hz). Furthermore, the output voltage of the CA/CNC-20% nanogenerator device exhibited a linear relationship with applied impact force, indicating the great potential in pressure sensors.  相似文献   
2.
以有序介孔碳(OMC)球为离子-电子转换层,制备了固态氯离子选择性电极,构建了基于离子敏感的场效应晶体管(ISFET)的手持式传感系统,用于检测人体血清中的氯离子。优化了OMC前驱体的碳化温度,探究了OMC形貌结构对电极传感性能的影响;电极柔性化制备后考察了其在手持系统中对氯离子的检测效果。结果表明,最优条件下,电极在5.12×10^-4~1.02 mol/L的浓度范围呈现线性响应,响应斜率为60 mV/decade。该柔性电极在手持传感系统中展现出高灵敏度和重现性,可用于人体血清样品中氯离子的检测,其回收率为96.3%~104.9%。  相似文献   
3.
Piezoelectric materials have received much attention due to their great potential in environmental remediation by utilizing vibrational energy. In this paper, a novel piezoelectric catalyst, CoOx nanoparticles anchored BiFeO3 nanodisk composite, was intentionally synthesized via a photodeposition method and applied in piezocatalytic degradation of rhodamine B (RhB) under ultrasonic vibration. The as-synthesized CoOx/BiFeO3 composite presents high piezocatalytic efficiency and stability. The RhB degradation rate is determined to be 1.29 h−1, which is 2.38 folds higher than that of pure BiFeO3. Via optimizing the reaction conditions, the piezocatalytic degradation rate of the CoOx/BiFeO3 can be further increased to 3.20 h−1. A thorough characterization was implemented to investigate the structure, piezoelectric property, and charge separation efficiency of the CoOx/BiFeO3 to reveal the nature behind the high piezocatalytic activity. It is found that the CoOx nanoparticles are tightly adhered and uniformly dispersed on the surface of the BiFeO3 nanodisks. Strong interaction between CoOx and BiFeO3 triggers the formation of a heterojunction structure, which further induces the migration of the piezoinduced holes on the BiFeO3 to CoOx nanoparticles. The recombination of electron-hole pairs is retarded, thereby increasing the piezocatalytic performance greatly. This work may offer a new paradigm for the design of high-efficiency piezoelectric catalysts.  相似文献   
4.
5.
Recently, we reported molecular dynamics simulations of stable cyclotron motions of ions and water molecules in a carbon nanotorus, induced by different rotating electric fields (EFs). This study is devoted to the calculation and characterisation of the magnetic field (MF) induced by these cyclotron motions. Results show that carbon nanotorus containing ions or water molecules acts as an EF-to-MF transducer. Components of the instantaneous induced MF show large-scale oscillations superimposed by strong fluctuations arising respectively from overall circular motion and random collisions of moving species. Analysis of the space-dependencies of the induced MF components shows that the induced MF is maximum at the centre of the nanotorus. The MF induced by cyclotron motion of ions follows the orders B(Ca2+)?>?B(Na+)?≈?B(K+) at E?=?1.0?V/nm and B(E?=?1.0?V/nm)?>?B(E?=?0.5?V/nm)?>?B(E?=?0.1?V/nm). The time-averaged induced MF of the cyclotron motion of 81 water molecules is almost 102 times stronger than that of ions. The induced MF strength is decreased with increasing distance from nanotorus and decays effectively at about 17.3–18.1 and 15.9–18.2?nm along the z-axis of the nanotorus for ions and water molecules, respectively. The magnitude of the MF induced by cyclotron motions of water molecules and ions, respectively, decreases and increases in the nanotorus with freed carbon atoms.  相似文献   
6.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
7.
This work designed and prepared a novel heterojunction composite NiO/BaTiO3 through a method of photodeposition and used it in piezocatalytic dye removal for the first time. Results of the piezocatalytic test indicated that the NiO/BaTiO3 composite presented superior efficiency and stability in the RhB degradation under the vibration of ultrasonic waves. The best NiO/BaTiO3 sample synthesized under light irradiation for 2 h displayed an RhB degradation rate of 2.41 h−1, which was 6.3 times faster than that of pure BaTiO3. By optimizing the piezocatalytic reaction conditions, the degradation rate constant of NiO/BaTiO3 can further reach 4.14 h−1 A variety of systematic characterizations were executed to determine the reason for the excellent piezocatalytic performance of NiO/BaTiO3. The band potentials of NiO and BaTiO3 are found to coincide, and at their contact interface, they may create a type-II p-n heterojunction structure. Driven by the potential difference and the built-in electric field, piezoelectrically enriched charge carriers can migrate between NiO and BaTiO3, resulting in improved efficiency in charge separation and an increase in the piezoelectric catalytic performance. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient catalysts in the field of piezoelectric catalysis.  相似文献   
8.
Photocatalysis technology has been proved to be a potential strategy for removal of organic dyes, however high-power light sources are generally necessary to initiate photocatalytic reaction. In this work, we employed an excellent photocatalyst of Bi2WO6 with visible light harvest and meanwhile an intrinsic ferroelectricity, which realized the efficient degradation of organic dye via the synergetic photopiezocatalysis. Through coupling the illumination by a low-power (9 W) LED and the ultrasonic vibration (120 W) by an ultrasonic cleaner, the nanoflower-like Bi2WO6 composed of ultrathin nanosheets showed a much more enhanced photopiezocatalysis performance for purification of organic dye than the individual photocatalysis and piezocatalysis. Furthermore, the high mineralization efficiency and the good durability of the Bi2WO6 catalyst were demonstrated. The possible mechanism of photopiezocatalysis was finally proposed, where the ultrasound-induced piezoelectric field in Bi2WO6 drove photo-generated electrons and holes to diffuse along opposite directions, consequently promoting the separation efficiency of charge carriers. This work indicates that the synergetic photopiezocatalysis by coupling irradiation and ultrasonic vibration is a promising strategy to purify organic pollutants in wastewater.  相似文献   
9.
《Electroanalysis》2017,29(8):1840-1849
The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug‐release, and closed‐loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field‐effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field‐effect electrolyte‐insulator‐semiconductor sensor modified with a multi‐enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed‐loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.  相似文献   
10.
针对基于电磁微阀原理的非接触点样方式存在操作过程复杂、点样量偏大,以及压电喷墨原理的非接触点样方式存在点样针不易清洗、造价昂贵等不足,研制了一种基于压电振荡原理的新型非接触点样装置,实现了微量液体点样.在本装置中,毛细管点样针与压电驱动装置为两个独立单元,可以单独对毛细管点样针进行更换和清洗.采用激光拉制法制备的玻璃毛细管点样针具有内径可调、成本低等优点.此点样方式通过改变压电陶瓷的振幅和频率,可在10Symbolm@@_10~10Symbolm@@_9 L之间调控点样体积.以此为基础,结合三维精密位移控制技术,研制了一种基于压电振荡原理的微阵列生物芯片点样系统.对点样系统的点样体积、点样密度、点样精度等参数进行了测试,结果表明,此点样系统的最小点样体积可达320 pL,点样密度可达4000 点/cm2,并能够实现界面图案化制备.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号