首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
力学   1篇
物理学   3篇
  2013年   1篇
  2003年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
Domain switching in piezoelectric materials is caused by external loads such as electric field and stress that leads to non-linear behaviour. A study is carried out to compare the non-linear behaviour of 1–3 piezocomposites with different volume fractions and bulk piezoceramics. Experiments are conducted to measure the electrical displacement and strain on piezocomposites and bulk ceramics under high cyclic electrical loading and constant compressive prestress. A thermodynamically consistent uni-axial framework is developed to predict the nonlinear behaviour by combining the phenomenological and micromechanical techniques. Volume fractions of three distinct uni-axial variants (instead of six variants) are used as internal variables to describe the microscopic state of the material. In this model, the grain boundary effects are taken into account by introducing the back fields (electric field and stress) as non-linear kinematic hardening functions. An analytical model based on equivalent layered approach is used to calculate effective properties such as elastic, piezoelectric, and dielectric constants for different volume fractions of piezocomposites. The predicted effective properties are incorporated in the proposed uni-axial model and the dielectric hysteresis (electrical displacement versus electric field) as well as butterfly curves (strain versus electric field) are simulated. Comparison between the experiments and simulations show that this model can reproduce the characteristics of non-linear response. It is observed that the variation in fiber volume fraction and compressive stress has a significant influence on the response of the 1–3 piezocomposites.  相似文献   
2.
Ultrasonic transducers made with 1-3 connectivity piezocomposites are frequently used in Medical applications and nondestructive testing. When the transducer is used for special applications as, for instance air-coupled transmission, it is necessary to compensate for the high difference of acoustic impedance between transducer and medium using high amplitude pulses to generate high acoustic signal. Thus, the nonlinear behavior of the transducer must be taken into account in similar application conditions. The newly developed method, which performs the nonlinear characterization with burst signal excitation near the thickness resonance frequency, is based on the measure of the current as well as the vibration velocity of the piezocomposite transducer. The current of the stationary response is measured before the end of the burst signal excitation. Burst excitation enables us to measure the nonlinear characterization without producing overheating in the transducers. The amplitude level dependence of mechanical losses tandelta(m) and the stiffness increases |Deltac/c(0)| have been studied, as well as the velocity dependence of a point of the transducer, measured with a laser vibrometer. In this method, the power level applied to the transducers can be higher than other nonlinear measurement methods, providing measurements of high accuracy.  相似文献   
3.
本文利用1-3压电复合材料作为换能元件,通过特殊工艺制备成一面是平面,一面是球面的非均匀厚度压电振子,这种压电晶片加上激励电压后,不同厚度处以不同的共振频率振动,从而使压电晶片的振动频带加宽,本文介绍了这种压电晶片的机电特性,以及用这种压电晶片制成的宽带聚焦超声换能器的脉冲回波特性,此外,文中还对这种换能器与均匀厚度压电晶片换能器的脉冲回波特性进行了比较。  相似文献   
4.
扭转压电复合材料及其应用   总被引:4,自引:1,他引:3       下载免费PDF全文
本文描述了轴向-切向连通的圆柱2-2型压电复合材料。用PZT/环氧树脂制作的普通2-2型压电复合材料可拼接成一种具有扭转振动的压电复合材料。这种压电复合材料和为圆柱2-2型压电复合材料的近似。本文还给出两组这种拼接型压电材料晶片的参数,用这种压电材料制作了产生扭转振动的换能器,测试了换能器的波形,频谱特性和偏振特性,指出了使用适当的高通滤波器可以抑制横波中的径向模,分析了接收波列中纵波抑制较强的原  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号