首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45969篇
  免费   4071篇
  国内免费   3843篇
化学   29367篇
晶体学   258篇
力学   2038篇
综合类   697篇
数学   7487篇
物理学   14036篇
  2023年   486篇
  2022年   672篇
  2021年   1579篇
  2020年   1301篇
  2019年   1293篇
  2018年   949篇
  2017年   1083篇
  2016年   1359篇
  2015年   1521篇
  2014年   1909篇
  2013年   3207篇
  2012年   2253篇
  2011年   2756篇
  2010年   2397篇
  2009年   2890篇
  2008年   3095篇
  2007年   3183篇
  2006年   2632篇
  2005年   1787篇
  2004年   1604篇
  2003年   1542篇
  2002年   1385篇
  2001年   1274篇
  2000年   944篇
  1999年   773篇
  1998年   734篇
  1997年   611篇
  1996年   650篇
  1995年   606篇
  1994年   566篇
  1993年   594篇
  1992年   581篇
  1991年   407篇
  1990年   336篇
  1989年   266篇
  1988年   295篇
  1987年   239篇
  1986年   245篇
  1985年   352篇
  1984年   269篇
  1983年   153篇
  1982年   322篇
  1981年   484篇
  1980年   447篇
  1979年   480篇
  1978年   380篇
  1977年   287篇
  1976年   251篇
  1974年   78篇
  1973年   159篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
1.
The surface charge is a key concept in electrochemistry. Mathematically, the surface charge is obtained from a spatial integration of the volume charge along a particular direction. Ambiguities thus arise in choosing the starting and ending points of the integration. As for electrocatalytic interfaces, the presence of chemisorbates further complicates the situation. In this minireview, I adopt a definition of the surface charge within a continuum picture of the electric double layer. I will introduce surface charging behaviors of firstly ordinary electrochemical interfaces and then electrocatalytic interfaces featuring partially charged chemisorbates. Particularly, the origin of nonmonotonic surface charging behaviors of electrocatalytic interfaces is explained using a primitive model. Finally, a brief account of previous studies on the nonmonotonic surface charging behavior is presented, as a subline of the spectacular history of electric double layer.  相似文献   
2.
One of the major capacity boosters for 5G networks is the deployment of ultra-dense heterogeneous networks (UDHNs). However, this deployment results in a tremendous increase in the energy consumption of the network due to the large number of base stations (BSs) involved. In addition to enhanced capacity, 5G networks must also be energy efficient for it to be economically viable and environmentally friendly. Dynamic cell switching is a very common way of reducing the total energy consumption of the network, but most of the proposed methods are computationally demanding, which makes them unsuitable for application in ultra-dense network deployment with massive number of BSs. To tackle this problem, we propose a lightweight cell switching scheme also known as Threshold-based Hybrid cEll swItching Scheme (THESIS) for energy optimization in UDHNs. The developed approach combines the benefits of clustering and exhaustive search (ES) algorithm to produce a solution whose optimality is close to that of the ES (which is guaranteed to be optimal), but is computationally more efficient than ES and as such can be applied for cell switching in real networks even when their dimension is large. The performance evaluation shows that THESIS significantly reduces the energy consumption of the UDHN and can reduce the complexity of finding a near-optimal solution from exponential to polynomial complexity.  相似文献   
3.
Zhengran Wang 《中国物理 B》2022,31(4):48202-048202
Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.  相似文献   
4.
5.
In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.  相似文献   
6.
In this work, we present and analyze a mathematical model for tumor growth incorporating ECM erosion, interstitial flow, and the effect of vascular flow and nutrient transport. The model is of phase-field or diffused-interface type in which multiple phases of cell species and other constituents are separated by smooth evolving interfaces. The model involves a mesoscale version of Darcy’s law to capture the flow mechanism in the tissue matrix. Modeling flow and transport processes in the vasculature supplying the healthy and cancerous tissue, one-dimensional (1D) equations are considered. Since the models governing the transport and flow processes are defined together with cell species models on a three-dimensional (3D) domain, we obtain a 3D–1D coupled model.  相似文献   
7.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
8.
Nanostructured BaTi1-xSnxO3 (x = 0, 0.05 & 0.075) were successfully synthesized using the modified Pechini processing method. The phase purity and symmetry were examined by X-ray diffraction and Raman spectroscopy. Tetragonal symmetry was obtained for BaTiO3 (BT) while orthorhombic symmetry for Sn doped BT. BT exhibits an up-shift of the Curie temperature towards high temperatures (TC = 139 °C). In contrast, a down-shift was recorded for Sn doped BT. Then, indirect electrocaloric (EC) adiabatic temperature change ΔT and the energy storage performances were determined based on ferroelectric hysteresis loops. Interestingly, large EC responsivity of ΔT/ΔE = 0.81 × 10−6 K m/V was obtained for the BT accompanied with a moderate stored energy of 23 mJ/cm3 but with a high energy efficiency of 67%. The incorporation of Sn in BT was found to broaden the EC responsivity and to improve the energy efficiency up to 90%, recorded for the 5% Sn doped BT.  相似文献   
9.
Chinese Annals of Mathematics, Series B - In the present article, the authors find and establish stability of multiplier ideal sheaves, which is more general than strong openness.  相似文献   
10.
Solution combustion synthesis (SCS) is a worldwide used methodology for the preparation of inorganic ceramic and composite materials with controlled properties for a wide number of applications, from catalysis to photocatalysis and electrocatalysis, from heavy metal removal to sensoristics and electronics. The high versatility and efficiency of this technique have led to the introduction of many variants, which allowed important optimization to the prepared materials. Moreover, its ecofriendly nature encouraged further studies about the use of sustainable precursors for the preparation of nanomaterials for energy and environment, according to the concept of circular economy. On the other hand, the large variety of expressions to define SCS and the often-contradictory definitions of the SCS parameters witnessed a scarce consciousness of the potentiality of this methodology. In this review article, the most important findings about SCS and the selection criteria for its main parameters are critically reviewed, in order to give useful guidelines to those scientists who want to use this methodology for preparing materials with improved or new functional properties. This review aims as well (i) to bring more clarity in the SCS terminology (ii) to increase the awareness of the SCS as a convenient tool for the synthesis of materials and (iii) to propose a new perspective in the SCS, with special attention to the use of ecofriendly procedures. Part of the review is also dedicated to precautions and limitations of this powerful methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号