首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   7篇
  国内免费   18篇
化学   128篇
力学   57篇
综合类   1篇
数学   5篇
物理学   87篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   17篇
  2011年   20篇
  2010年   22篇
  2009年   24篇
  2008年   37篇
  2007年   26篇
  2006年   9篇
  2005年   13篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   9篇
  1995年   3篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
Accuracy of the gas permeability parameters (GPPs), i.e. solubility, diffusivity and permeability deduced from permeation measurements, is investigated for the case of homogeneous polymer sheet samples. The widely used time-lag method (TLM) and the recently introduced full curve-fitting method (FCFM) are compared on simulated and on measured permeation curves artificially distorted in various ways in order to mimic potential deficiencies of permeation measurements. Accuracy of the methods is defined as the relative deviation of the calculated from the real GPPs, i.e. those which are deduced from the distorted and the original, non-distorted curves, respectively. The following distortions have been applied: temporal truncation of the permeation curves, increasing the noise level of the measurement and shifting the permeation curve either along the concentration or the time axis. (The latter two transformations correspond to an unnoticed background shift in the readings of the concentration detection unit and an uncertainty in the actual inception of the permeation process, respectively). While all these distortions mimic realistic deficiencies of permeation measurements, the last one is relevant only in case of fast permeation processes through highly permeable membranes. For all but the last transformation, FCFM has been found to yield more accurate GPPs than TLM.  相似文献   
2.
The permeability of aromatic hydrocarbons, i.e. BTEX and styrene, through PVC pipes was investigated using a 6-cm pipe-bottle model with direct solid-phase microextraction (SPME) sampling. It was found that an aromatic hydrocarbon with a large molecular size or low polarity may be less permeable through PVC pipes. In addition, the diffusion coefficients of BTEX and styrene in PVC pipes ranged from 4.87 to 7.64 × 10−8 cm2/s. According to the simulation results of a one-dimensional diffusion model, it is speculated that diffusion transport of benzene and toluene in PVC pipes may have non-Fickian behavior. The advantage of using the innovated test model is that SPME provides a nondestructive analytical means to monitor the concentrations of organic compounds in pipe-water. Therefore, the pipe-bottle model developed herein has potential applications in determining the resistance of polymeric pipes to permeation by solvents in the aqueous solution.  相似文献   
3.
《Current Applied Physics》2020,20(5):638-642
A series of bio-silica incorporated barium-ferrite-composites with the composition of (x)Bio-SiO2:(80-x)γ-Fe2O3:(20)BaO, where x = 0, 1, 2, and 3 wt% were prepared using the modified solid-state reaction method. The influence of different bio-silica (extricated from sintered rice husk) contents on the surface morphologies, structures, and magnetic characteristics of these composites were assessed. The relative complex permittivity and permeability were resolved using the Nicholson-Ross-Weir strategy in the frequency range of 8–13 GHz. Meanwhile, the reflection loss was estimated through the transmission/reflection line theory to assess the MW absorption properties of the composites. Incorporation of the bio-silica in the barium ferrite composites generated a new hexagonal phase (Ba3Fe32O51) and a tetragonal phase (BaFeSi4O10) which led to a decrease in the saturation magnetization and significant shift in the MW frequency absorption peak positions.  相似文献   
4.
5.
Co2Z hexaferrite materials possess intrinsically high permeability, zero field ferromagnetic resonance values (∼1 GHz), and have their magnetic orientation in the plane perpendicular to the c-axis. These characteristics make these materials practical for applications in low to mid ultra-high frequency and L-band microwave device designs. Due to the relatively large size of elements operating within these bands, it has become important to produce large amounts of Co2Z type hexaferrite materials. A modified co-precipitation method has been proposed to produce scalable quantities of high quality Co2Z hexaferrite particles, at ∼24 g/L. These particles have been thoroughly characterized by vibrating sample magnetometry (VSM) and X-ray diffraction (XRD) with regard to phase purity and magnetic properties. After formation and subsequent ball milling, to achieve single domain particles on the order of 0.5–2 um, particles were oriented and pressed into compacts inside a rotating field to ensure magnetization in plane. Samples then underwent VSM, XRD, and scanning electron microscopy to determine the orientation effect. In addition, the complex permittivity and permeability of these samples were measured as a function of applied field and processing conditions. The results show strong orientation in these compacts making them practical for a variety of device applications.  相似文献   
6.
The permeabilities of microscale fibrous porous media were calculated using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Two models of the microscale fibrous porous media were constructed based on overlapping fibers (simple cubic, body-centered cubic). Arranging the fibers in skew positions yielded two additional models comprising non-overlapping fibers (skewed simple cubic, skewed body-centered cubic). As the fiber diameter increased, the fibers acted as granular inclusions. The effects of the overlapping fibers on the media permeability were investigated. The overlapping fibers yielded permeability values that were a factor of 2.5 larger than those obtained from non-overlapping fibers, but the effects of the fiber arrangement were negligible. Two correlations were obtained for the overlapping and non-overlapping fiber models, respectively. The effects of the rarefaction and slip flow are also discussed. As the Knudsen number increased, the dimensionless permeability increased; however, the increase differed depending on the fiber arrangement. In the slip flow regime, the fiber arrangement inside the porous media became an important factor.  相似文献   
7.
Dynamic contrast enhanced MRI (DCE-MRI) has utility for improving clinical diagnoses of solid tumors, and for evaluating the early responses of anti-angiogenic chemotherapies. The Reference Region Model (RRM) can improve the clinical implementation of DCE-MRI by substituting the contrast enhancement of muscle for the Arterial Input Function that is used in traditional DCE-MRI methodologies. The RRM is typically fitted to experimental results with a non-linear least squares algorithm. This report demonstrates that this algorithm produces inaccurate and imprecise results when DCE-MRI results have low SNR or slow temporal resolution. To overcome this limitation, a linear least-squares algorithm has been derived for the Reference Region Model. This new algorithm improves accuracy and precision of fitting the Reference Region Model to DCE-MRI results, especially for voxel-wise analyses. This linear algorithm is insensitive to injection speeds, and has 300- to 8000-fold faster calculation speed relative to the non-linear algorithm. The linear algorithm produces more accurate results for over a wider range of permeabilities and blood volumes of tumor vasculature. This new algorithm, termed the Linear Reference Region Model, has strong potential to improve clinical DCE-MRI evaluations.  相似文献   
8.
Abstract

Electrostatically layered aluminosilicate nanocomposites have been prepared by the sequential deposition of poly(allylamine hydrochloride)/poly(acrylic acid)/poly(allylamine hydrochloride)/saponite (PAH/PAA/PAH/saponite)10 on poly(ethylene terephtalate) (PET) film. Exfoliated saponite nanoplatelets were obtained by extensive shaking, sonication, and centrifugation of a water suspension. To minimize permeability and improve the mechanical integrity, cross‐linking of composite films was carried out at different temperatures. The formation of amide linkage induced through heating was observed by Fourier Transform Infrared (FT‐IR) and x‐ray photoelectron spectroscopy (XPS). The cross‐linking of nanocomposites (PAH/PAA/PAH/saponite)10 showed 60% decrease in permeability of oxygen when compared with the pristine PET substrate film. In contrast, water permeability of the nanocomposite membrane was not affected by heating temperature and deposition cycles.  相似文献   
9.
Copolymerization of 1-[3,5-bis(trimethylsilyl)phenyl]-2-phenylacetylene (m,m-(Me3Si)2DPA) with other diphenylacetylene derivatives and their copolymer properties were investigated. Homopolymerization of m,m-(Me3Si)2DPA by TaCl5n-Bu4Sn (1:2) did not give the polymer due to steric hindrance. However, m,m-(Me3Si)2DPA copolymerized with diphenylacetylene (DPA), 1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene (p-Me3Si DPA), and 1-phenyl-2-[m-(trimethylsilyl)phenyl]acety-lene (m-Me3SiDPA) in the presence of TaCl5n-Bu4Sn at various feed ratios to give copolymers in moderate yields. The formed copolymers were yellow to orange solids, which were soluble in common organic solvents such as toluene and CHCl3. The highest weight-average molecular weights (Mw) of these copolymers reached ca. 6 × 105 and tough films could be obtained by solution casting. Their onset temperatures of weight loss in air were observed around 400°C, indicating high thermal stability. The oxygen permeability coefficients at 25°C of copoly(m,m-(Me3Si)2 DPA/DPA) (feed ratio 1:1) and copoly(m,m-(Me3Si)2DPA/p-Me3SiDPA) (feed ratio 1:2) were 21 and 100 barrers, respectively, medium in magnitude among polymers from substituted acetylenes.  相似文献   
10.
The dynamic magnetization processes of nanocrystalline Fe80Ge3Nb10B7 alloys after annealing at different temperatures are studied through the permeability spectroscopy. Three steps of crystallization are found when amorphous Fe80Ge3Nb10B7 alloys are heated from 300to 1200 K. The dominant magnetization process varies with different annealing temperatures. Domain wall bulging is the main magnetization mechanism under weak applied field. When the applied field exceeds pinning field Hp, the depinning-involved domain wall displacement occurs. Different annealing temperature results in different Hp. The lower value of μ′ and high relaxation frequency after heating at 923 and 973 K are due to the strengthened domain wall pinning and the increase of magnetocrystalline anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号