首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9590篇
  免费   1077篇
  国内免费   1373篇
化学   7641篇
晶体学   86篇
力学   602篇
综合类   76篇
数学   511篇
物理学   3124篇
  2024年   10篇
  2023年   112篇
  2022年   218篇
  2021年   313篇
  2020年   413篇
  2019年   350篇
  2018年   253篇
  2017年   301篇
  2016年   397篇
  2015年   313篇
  2014年   407篇
  2013年   646篇
  2012年   634篇
  2011年   609篇
  2010年   489篇
  2009年   626篇
  2008年   774篇
  2007年   659篇
  2006年   649篇
  2005年   550篇
  2004年   470篇
  2003年   419篇
  2002年   286篇
  2001年   235篇
  2000年   224篇
  1999年   187篇
  1998年   179篇
  1997年   173篇
  1996年   184篇
  1995年   153篇
  1994年   147篇
  1993年   146篇
  1992年   93篇
  1991年   67篇
  1990年   62篇
  1989年   55篇
  1988年   40篇
  1987年   41篇
  1986年   28篇
  1985年   21篇
  1984年   14篇
  1983年   6篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1979年   19篇
  1978年   9篇
  1973年   8篇
  1971年   5篇
  1970年   4篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
1.
Yandong Guo 《中国物理 B》2022,31(12):127201-127201
Controlling the spin transport at the single-molecule level, especially without the use of ferromagnetic contacts, becomes a focus of research in spintronics. Inspired by the progress on atomic-level molecular synthesis, through first-principles calculations, we investigate the spin-dependent electronic transport of graphene nanoflakes with side-bonded functional groups, contacted by atomic carbon chain electrodes. It is found that, by rotating the functional group, the spin polarization of the transmission at the Fermi level could be switched between completely polarized and unpolarized states. Moreover, the transition between spin-up and spin-down polarized states can also be achieved, operating as a dual-spin filter. Further analysis shows that, it is the spin-dependent shift of density of states, caused by the rotation, that triggers the shift of transmission peaks, and then results in the variation of spin polarization. Such a feature is found to be robust to the length of the nanoflake and the electrode material, showing great application potential. Those findings may throw light on the development of spintronic devices.  相似文献   
2.
铋基卤化物材料因其无毒和优良的光电性能而显示出巨大的应用潜力。BiI3作为一种层状重金属半导体,已被用于X射线检测、γ射线检测和压力传感器等领域,最近其作为一种薄膜太阳能电池吸收材料备受关注。本文采用简单的气相输运沉积(VTD)法,以BiI3晶体粉末作为蒸发源,在玻璃基底上得到高质量c轴择优取向的BiI3薄膜。并通过研究蒸发源温度和沉积距离对薄膜物相和形貌的影响,分析了BiI3薄膜择优生长的机理。结果表明VTD法制备的BiI3薄膜属于三斜晶系,其光学带隙为~1.8 eV。沉积温度对薄膜的择优取向有较大影响,在沉积温度低于270 ℃时,沉积的薄膜具有沿c轴择优取向生长的特点,超过此温度,c轴择优取向生长消失。在衬底温度为250 ℃、沉积距离为15 cm时制备的薄膜结晶性能最好,晶体形貌为片状八面体。  相似文献   
3.
4.
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE–POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum–coarse-grained model for the study of RBCs in fluid flows.  相似文献   
5.
This paper presents lipophilicity and bio‐mimetic property determination of 15 phytoestrogens, namely biochanin A, daidzein, formononetin, genistein, genistein‐4,7‐dimethylether, prunetin, 3,4,7‐trihydroxyisoflavon, 4,6,7‐trihydroxyisoflavon, 4,6,7‐trimethoxyisoflavon, daidzin, genistin, ononin, sissotrin, coumestrol and coumestrol dimethylether. High‐performance liquid chromatography with fast gradient elution and Caco‐2 cell line were used to determine the physicochemical properties of selected phytoestrogens. Lipophilicity was determined on octadecyl‐sylane stationary phase using pH 2.0 and pH 7.4 buffers. Immobilized artificial membrane chromatography was used for prediction of interaction with biological membranes. Protein binding was measured on human serum albumin and α‐1‐acid‐glycoprotein (AGP) stationary phases. Caco‐2 assay was used as a gold standard for assessing in vitro permeability. The obtained results differentiate phytoestrogens according to their structure where aglycones show significantly higher lipophilicity, immobilized artificial membrane partitioning, AGP binding and Caco‐2 permeability compared with glucosides. However, human serum albumin binding was very high for all investigated compounds. Furthermore, a good correlation between experimentally obtained chromatographic parameters and in silico prediction was obtained for lipophilicity and human serum albumin binding, while the somewhat greater difference was obtained for AGP binding and Caco‐2 permeability.  相似文献   
6.
Endocytosis plays important roles in many cellular physiological processes, such as metabolism and immune. Many theoretical models have been proposed to study the endocytic process, but little has considered the tensile deformation of the membrane and the actin forces. In this paper, a new endocytic model is proposed based on the co-rotational grid method. Our model gives a direct estimation of the in-plane strain of the plasma membrane and provides a basis for the calculation of further scission process of the vesicle. The results fit well with experimental data in the literature. Moreover, it is suggested that the active forces of actin at the endocytic site is the main mechanism driving the invagination of the plasma membrane.  相似文献   
7.
The use of nanoparticle (NP) systems to control cellular physiology, including membrane potential, can facilitate furthered understanding of many disparate cellular processes ranging from cellular proliferation to tissue regeneration. A gold NP (AuNP) bioconjugate system based on the honeybee venom peptide, tertiapin‐Q (AuNP‐TPN‐Q), that depolarizes membrane potential by targeting inward rectifier potassium channels (Kir), is developed. The conjugate elicits, in a peptide concentration–dependent manner, a greater and more rapid depolarization response compared to the free peptide alone. The specificity of the interaction of the AuNP‐TPN‐Q conjugate with the Kir channel using immunocytochemistry and competition binding assays is confirmed. It is further shown that membrane depolarization is photothermally reversible via the laser‐induced plasmonic heating of the AuNP, providing a level of control over Kir channels not afforded by currently available drugs. The functional nanobioconjugate described herein provides a new research tool for understanding the intricacies of ion channel activity and the modulation of cellular membrane potential.  相似文献   
8.
The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2O2-photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.  相似文献   
9.
In order to improve the antifouling performance of PVDF membrane, a novel zinc sulfide/graphene oxide/polyvinylidene fluoride (ZnS/GO/PVDF) composite membrane was prepared by immersed phase inversion method. The surface morphology, crystal structure, photocatalytic activity, and antifouling property of the as‐prepared membranes were systematically studied. Results showed that the ZnS/GO/PVDF hybrid membranes were successfully fabricated with uniform surface. The hybrid membrane surface possessed higher hydrophilicity with water contact angle decreasing from 77.1° to 62.2°. The permeability of the hybrid membrane was therefore enhanced from 222.9 to 326.1 L/(m2 hour). Moreover, bovine serum albumin (BSA) retention experiment showed that the hybrid membrane separation was also promoted by 7.2%. The blending of ZnS and GO enhanced the hydrophilic and photocatalytic performances of PVDF membrane, which mitigated the membrane fouling effectively. This novel hybrid membrane could accelerate the practical application of photocatalytic technology in membrane separation process.  相似文献   
10.
Within the framework of the isospin-dependent transport model, the roles of the reactions N? → NN and πN→ ? are investigated through simulating heavy-ion collisions at 1000 MeV/nucleon. The absorption process N? → NN plays an important role for heavy impact systems and small impact parameters than for light impact systems and large impact parameters. The resorption process πN→ ? is of importance for heavy impact systems and large impact parameters than for light impact systems and small impact parameters. Thus the influences of the reaction N? → N N(πN→ ?) on pion production dynamics can be neglected in heavy-ion collisions for smaller(larger) impact parameters and light systems. It is the reaction πN→ ? that causes the anti-correlation of pions and nucleons in the rapidity dependence of the directed flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号