首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2699篇
  免费   172篇
  国内免费   561篇
化学   2090篇
晶体学   16篇
力学   311篇
综合类   14篇
数学   51篇
物理学   950篇
  2023年   180篇
  2022年   100篇
  2021年   137篇
  2020年   124篇
  2019年   69篇
  2018年   92篇
  2017年   94篇
  2016年   97篇
  2015年   95篇
  2014年   114篇
  2013年   144篇
  2012年   125篇
  2011年   197篇
  2010年   129篇
  2009年   189篇
  2008年   166篇
  2007年   187篇
  2006年   201篇
  2005年   109篇
  2004年   126篇
  2003年   115篇
  2002年   69篇
  2001年   49篇
  2000年   49篇
  1999年   50篇
  1998年   53篇
  1997年   53篇
  1996年   45篇
  1995年   38篇
  1994年   43篇
  1993年   51篇
  1992年   23篇
  1991年   15篇
  1990年   13篇
  1989年   21篇
  1988年   18篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   4篇
  1982年   5篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有3432条查询结果,搜索用时 31 毫秒
1.
Constructing atomically dispersed active sites with densely exposed and dispersed double metal-Sx catalytic sites for favorable OER catalytic activity remains rare and challenging. Herein, we design and construct a Fe1Sx@Co3S4 electrocatalyst with Fe single atoms epitaxially confined in Co3S4 nanosheets for catalyzing the sluggish alkaline oxygen evolution reaction(OER). Consequently, in ultralow concentration alkaline solutions(0.1 mol/L KOH), such a catalyst is highly active and robust for OER with low overpotentials of 300 and 333 mV at current densities of 10 and 30 mA/cm2, respectively, accompanying long-term stability without significant degradation even for 350 h. In addition, Fe1Sx@Co3S4 shows a turnover frequency(TOF) value of 0.18 s−1, nearly three times that of Co3S4(0.07 s−1), suggesting the higher atomic utilization of Fe single atoms. Mössbauer and in-situ Raman spectra confirm that the OER activity of Fe1Sx@Co3S4 origins from a thin catalytic layer of Co(Fe)OOH that interacts with trace-level Fe species in the electrolyte, creating dynamically stable active sites. Combined with experimental characterizations, it suggests that the most active S-coordinated dual-metal site configurations are 2S-bridged (Fe-Co)S4, in which Co-S and Fe-S moieties are shared with two S atoms, which can strongly regulate the adsorption energy of reaction intermediates, accelerating the OER reaction kinetics.  相似文献   
2.
易志红  白洋  陈立荪  徐峰  陈利江 《应用数学》2015,37(11):951-954
目的 观察丹酚酸A 对H2O2所致大鼠脑微血管内皮细胞(RCMECs)氧化损伤的保护作用,并探讨其可能的作用机 制。方法 分离并培养大鼠脑微血管内皮细胞,用H2 O2 损伤的方法建立氧自由基损伤模型。采用丹酚酸A 进行干预后,分别测定细胞培养液中乳酸脱氢酶(LDH)活性、血栓素B2(TXB2)水平、6- 酮基前列腺素1α(6-keto-PGF1α)的含量,以及细胞内和培养液中脂质过氧化产物丙二醛(MDA)含量和超氧化物歧化酶(SOD)的活性。结果 H2O2致RCMECs 氧化损伤后,细胞LDH 释放水平、TXB2和MDA 的含量均明显增加,同时6-keto-PGF1α 含量和SOD 活性显著下降;而丹酚酸A 预处理后能呈浓度依赖性的降低RCMECs 氧化损伤后LDH 水平、TXB2含量和细胞内外的MDA 含量,提高受损细胞6-keto-PGF1α 的表达和细胞内外SOD 活性。结论 丹酚酸A 对H2O2所致RCMECs 氧化损伤具有保护作用,其机制可能与其抗氧化作用有关。  相似文献   
3.
4.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
5.
《Current Applied Physics》2020,20(3):456-461
Carbon-based electrocatalysts for oxygen reduction reaction (ORR), especially in anion exchange membrane fuel cells (AEMFCs), have received a lot of attention because they exhibit excellent stability and are comparable to commercial Pt/C catalysts. Currently, to maximize the catalytic activity of carbon-based electrocatalysts, there are two major strategies: heteroatom doping or exposing active edge sites. However, the approach of increasing heteroatomic dopants of active edge sites has been rarely addressed. In this study, we present a simple strategy to prepare edge-enriched graphene catalysts with an increased ratio of heteroatomic dopants suitable for ORR of AEMFCs. The catalysts were prepared under harsh oxidation conditions, followed by a simple co-doping process with boron and nitrogen. The ORR activity of the catalysts was observed to be related to an increase of edge sites with heteroatomic dopants. We believe that the edge-enriched structure leads to accelerated electron transfer with enhanced oxygen adsorption.  相似文献   
6.
Recently, oral absorption of cyclic hexapeptides was improved by N‐methylation of their backbone amides. However, the number and position of N‐methylations or of solvent exposed NHs did not correlate to intestinal permeability, measured in a Caco‐2 model. In this study, we investigate enantiomeric pairs of three polar and two lipophilic peptides to demonstrate the participation of carrier‐mediated transporters. As expected, all the enantiomeric peptides exhibited identical lipophilicity (logD7.4) and passive transcellular permeability determined by the parallel artificial membrane permeability assay (PAMPA). However, the enantiomeric polar peptides exhibited different Caco‐2 permeability (Papp) in both directions a–b and b–a. The same trend was observed for one of the lipophilic peptide, whereas the second lipophilic enantiomer pair showed identical Caco‐2 permeability (within the errors). These findings provide the first evidence for the involvement of carrier‐mediated transport for peptides, especially for those of polar nature.  相似文献   
7.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
8.
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.  相似文献   
9.
Novel 6-alkyl- and 6-alkenyl-3-fluoro-2-pyridinaldoximes have been synthesised by using a mild and efficient chemoselective hydrogenation of 6-alkynyl-3-fluoro-2-pyridinaldoxime scaffolds, without altering the reducible, unprotected, sensitive oxime functionality and the C−F bond. These novel 6-alkyl-3-fluoro-2-pyridinaldoximes may find medicinal application as antidotes to organophosphate poisoning. Indeed, one low-molecular-weight compound exhibited increased affinity for sarin-inhibited acetylcholinesterase (hAChE) and greater reactivation efficiency or resurrection for sarin-inhibited hAChE, compared with those of 2-pyridinaldoxime (2-PAM) and 1-({[4-(aminocarbonyl)pyridinio]methoxy}methyl)-2-[(hydroxyimino)methyl]pyridinium chloride (HI-6), two pyridinium salts currently used as antidote by several countries. In addition, the uncharged 3-fluorinated bifunctional hybrid showed increased in vitro blood–brain barrier permeability compared with those of 2-PAM, HI-6 and obidoxime. These promising features of novel low-molecular-weight alkylfluoropyridinaldoxime open up a new era for the design, synthesis and discovery of central non-quaternary broad spectrum reactivators for organophosphate-inhibited cholinesterases.  相似文献   
10.
Use of nanocomposites is a well-established approach in enhancing the mechanical and barrier properties of bionanocomposite film for food packaging applications. The seed mucilage of Ocimum basilicum was employed for the preparation of bionanocomposite films with montmorillonite (MMT) as nanofiller. The films were prepared by solvent-casting method at varied solution pH (1, 3, 5 and 9) and MMT loading (1%, 3%, 5%, 10%, 15% and 20%). The films were characterized for physical, mechanical and barrier properties in addition to microstructure and X-ray diffraction pattern. XRD analysis revealed the exfoliated dispersion of MMT at pH 9, confirming its effective interaction with the bionanocomposite film. Maximum film tensile strength was achieved at a lower MMT load of 5%. Water vapour permeability reduced with increase in MMT loading up to 5%, followed by an increase at higher MMT loadings. Film formed at pH 9 showed tensile strength of 17.3 ± 0.33 MPa and reduced water vapour permeability (WVP) of 0.21 g mm.m−2.hr−1.kPa−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号