首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   12篇
  国内免费   130篇
化学   543篇
晶体学   1篇
力学   38篇
数学   1篇
物理学   328篇
  2023年   29篇
  2022年   13篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   14篇
  2017年   27篇
  2016年   27篇
  2015年   30篇
  2014年   37篇
  2013年   47篇
  2012年   57篇
  2011年   84篇
  2010年   59篇
  2009年   111篇
  2008年   81篇
  2007年   82篇
  2006年   51篇
  2005年   29篇
  2004年   21篇
  2003年   21篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
排序方式: 共有911条查询结果,搜索用时 31 毫秒
1.
Laser ablation in liquids is growing in popularity for various applications including nanoparticle production, breakdown spectroscopy, and surface functionalization. When laser pulse ablates the solid target submerged in liquid, a cavitation bubble develops. In case of “finite” geometries of ablated solids, liquid dynamical phenomena can occur inside the bubble when the bubble overflows the surface edge. To observe this dynamics, we use diffuse illumination of a flashlamp in combination with a high-speed videography by exposure times down to 250 ns. The developed theoretical modelling and its comparison with the experimental observations clearly prove that this approach widens the observable area inside the bubble. We thereby use it to study the dynamics of laser-induced cavitation bubble during its expansion over a sharp-edge (“cliff-like” 90°) geometry submerged in water, ethanol, and polyethylene glycol 300. The samples are 17 mm wide stainless steel plates with thickness in the range of 0.025–2 mm. Bubbles are induced on the samples by 1064-nm laser pulses with pulse durations of 7–60 ns and pulse energies of 10–55 mJ. We observe formation of a fixed-type secondary cavity behind the edge where low-pressure area develops due to bubble-driven flow of the liquid. This occurs when the velocity of liquid overflow exceeds ~20 m s−1. A re-entrant liquid injection with up to ~40 m s−1 velocity may occur inside the bubble when the bubble overflows the edge of the sample. Formation and characteristics of the jet evidently depend on the relation between the breakdown-edge offset and the bubble energy, as well as the properties of the surrounding liquid. Higher viscosity of the liquid prevents the generation of the jet.  相似文献   
2.
Oral administration represents the most suitable mean among different means of administering drugs because it ensures high compliance by patients. Nevertheless, the lacking aqueoussolubility, as well as, inadequate metabolic/enzymatic stability of medicines are leading obstacles to successful drug administration by oral route. Among different systems, drug administration systems based on nanotechnology have the potential to surmount the problems associated with oral drug administration. Drug delivery systems based on nanotechnology offer an alternative to deliver antihypertensive agents with enhanced therapeutic effect and bioavailability. In this study, meta-analysis was utilized in combining data relating to oral bioavailability (area under plasma concentration time curve, AUC) enhancement through nanotechnology from multiple studies. Twenty-one studies of the total 37articles included in this study were from the kingdom of Saudi Arabia and were included in a specific meta-analysis. From the analysis conducted, the overall enhancement power of the nanotechnology based formulations on drug bioavailability was found to be 7.94% (95 %CI [5.809, 10.064]). Haven utilized comprehensive and recent data of the confirmed the enhancement of bioavailability using nanotechnology which for this study was grouped into five: solid lipid nanoparticles; polymer based nanoparticles; SNEEDS/Nanoemulsion; liposomes/proliposomes and; nanostructured lipid carriers. Furthermore, the meta-analysis, provided evidence of insignificant differences between APG Bio-SNEDDS and its free drug suspension (Apeginin, APG), though with relative bioavailabiilty of 1.91. Notwithstanding most of the treatment showed a substantial relative bioavailability.  相似文献   
3.
Remarkably, nanomaterials can interact with the cells of immune system and either enhance or inhibit its function in many ways. Unfortunately, such valuable information has been overlooked in studies of polysaccharide immune activity. This study isolated a nano-polysaccharide from vinegar-baked Radix Bupleuri by membrane separation system, DEAE-52 and Sephadex-G200. The physicochemical characterization and immunoregulatory activity were studied through DLS, Congo red, Scanning Electron Microscope, UV–Vis, HPGPC, FT-IR, Methylation, NMR, MTT, neutral red and enzyme linked immunosorbent assay. Results showed that VBCP2.5 was an acidic polysaccharide with a molecular weight of 674 kDa. Its monosaccharides composed of mannose, rhamnose, galacturonic acid, glucose, galactose and arabinose at a molar ratio of 1.72: 9.59: 57.63: 5.37: 6.71: 18.99. VBCP2.5 possessed micelle forming ability at 52.574 µg/mL and flexible chain conformation, as well as with a small size distribution ~ 84.99 nm and positive charge in stimulated blood fluid and different from that in deionized water. The microtopography was characterized by irregular lamellar, dendritic, cylindrical or spherical aggregates, with folds and cracks on the surface. Structure analyses showed that VBCP2.5 characterized by high proportion of 1,4 linked-α-D-GalpA and a small fraction of RG-I, some other glycosidic linkages included 1,5 linked-α-L-Araf, 1,3,5 linked-α-L-Araf, 1,3,4 linked-Galp, 1,4,6 linked-Manp, t-α-L-Araf, t-β-D-Glcp and t-α-D-Galp were also comprised. VBCP2.5 exhibited immunomodulatory potential which included the promotion of phagocytosis, the release of NO and the secretion of TNF-α and IL-6 of RAW264.7 cells. The possible activation of macrophages by VBCP2.5 may be mediated through endocytosis pathway. Small size, positive charge, shape and flexible conformation may accelerate this process. The information gathered here could lead to new platform for comprehensive understand included primary structure, properties of nanoscale, and correlation with immunoregulation of polysaccharides.  相似文献   
4.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
5.
Knowledge of the vibrational properties of nanoparticles is of fundamental interest since it is a signature of their morphology, and it can be utilized to characterize their physical properties. In addition, the vibration characteristics of the nanoparticles coupled with surrounding media and subjected to magnetic field are of recent interest. This paper develops an analytical approach to study the radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to magnetic field. Based on Maxwell's equations, the nonlocal differential equation of radial motion is derived in terms of radial displacement and Lorentz's force. Bessel functions are used to obtain a frequency equation. The model is justified by a good agreement between the results given by the present model and available experimental and atomic simulation data. Furthermore, the model is used to elucidate the effect of nanoparticle size, the magnetic field and the stiffness of the elastic medium on the radial breathing-mode frequencies of several nanoparticles. Our results reveal that the effects of the magnetic field and the elastic medium are significant for nanoparticle with small size.  相似文献   
6.
In this study the flow field and the nanoparticle collection efficiency of supersonic/hypersonic impactors with different nozzle shapes were studied using a computational modeling approach. The aim of this study was to develop a nozzle design for supersonic/hypersonic impactors with the smallest possible cut-off size d50 and rather sharp collection efficiency curves. The simulation results show that the changes in the angle and width of a converging nozzle do not alter the cut-off size of the impactor; however, using a conical Laval nozzle with an L/Dn ratio less than or equal to 2 reduced d50. The effect of using a cap as a focuser in the nozzle of a supersonic/hypersonic impactor was also investigated. The results show that adding a cap in front of the nozzle had a noticeable effect on decreasing the cut-off size of the impactor. Both flat disks and conical caps were examined, and it was observed that the nozzle with the conical cap had a lower cut-off size.  相似文献   
7.
Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a s timulus-responsive p hotothermal-promoted e ndosomal e scape d elivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.  相似文献   
8.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   
9.
Staphylococcus aureus (S. aureus) is able to hide within host cells to escape immune clearance and antibiotic action, causing life-threatening infections. To boost the therapeutic efficacy of antibiotics, new intracellular delivery approaches are urgently needed. Herein, by rational design of an adamantane (Ada)-containing antibiotic-peptide precursor Ada-Gly-Tyr-Val-Ala-Asp-Cys(StBu)-Lys(Ciprofloxacin)-CBT ( Cip-CBT-Ada ), we propose a strategy of tandem guest-host-receptor recognitions to precisely guide ciprofloxacin to eliminate intracellular S. aureus. Via guest-host recognition, Cip-CBT-Ada is decorated with a β-cyclodextrin-heptamannoside ( CD-M ) derivative to yield Cip-CBT-Ada/CD-M , which is able to target mannose receptor-overexpressing macrophages via multivalent ligand-receptor recognition. After uptake, Cip-CBT-Ada/CD-M undergoes caspase-1 (an overexpressed enzyme during S. aureus infection)-initiated CBT-Cys click reaction to self-assemble into ciprofloxacin nanoparticle Nano-Cip . In vitro and in vivo experiments demonstrate that, compared with ciprofloxacin or Cip-CBT-Ada , Cip-CBT-Ada/CD-M shows superior intracellular bacteria elimination and inflammation alleviation efficiency in S. aureus-infected RAW264.7 cells and mouse infection models, respectively. This work provides a supramolecular platform of tandem guest-host-receptor recognitions to precisely guide antibiotics to eliminate intracellular S. aureus infection efficiently.  相似文献   
10.
The development of multimodal molecular imaging contrast agents based on versatile nanomaterials has recently attracted much attention in disease diagnosis and therapeutic delivery. Contrast agents made from nanoparticles and used for multimodal imaging in vivo provide a multidimensional pathophysiological overview of diseases. This review summarizes recently developed advanced nanomaterials for multimodal molecular imaging. We comprehensively discuss these nanoparticle contrast agents in terms of their targeting modalities, limitations in clinical translation and future directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号