首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   6篇
  国内免费   23篇
化学   220篇
晶体学   64篇
力学   7篇
物理学   120篇
  2023年   17篇
  2022年   18篇
  2021年   24篇
  2020年   24篇
  2019年   11篇
  2018年   10篇
  2017年   8篇
  2016年   14篇
  2015年   16篇
  2014年   11篇
  2013年   13篇
  2012年   10篇
  2011年   29篇
  2010年   44篇
  2009年   40篇
  2008年   28篇
  2007年   25篇
  2006年   14篇
  2005年   19篇
  2004年   18篇
  2003年   4篇
  2002年   7篇
  2000年   1篇
  1998年   1篇
  1990年   3篇
  1986年   2篇
排序方式: 共有411条查询结果,搜索用时 31 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
Metal complexes ([ML2], where M = Fe, Co, or Zn; HL = 2-[(6-ethyl-5-oxo-4,5-dihydro-2H-[1,2,4]triazin-3-ylidene)-hydrazono]-butyric acid, C9H13N5O3) of a Schiff base derived from α-ketobutyric acid (α-KBA) and diaminoguanidine (Damgu) were synthesized and characterized using elemental, spectral, and thermal studies. The metal complexes exhibited similar decomposition behavior, with a highly exothermic final decomposition step resulting in the formation of metal oxides. Isomorphism among the complexes was revealed using a powder X-ray diffraction (PXRD) technique. Solid solution precursors ([Zn1/3M2/3(L)2], where M = Fe, Co) were synthesized and characterized using various physico-chemical techniques. A thermal decomposition technique was used to prepare spinel-type zinc cobaltite (ZnCo2O4) and zinc ferrite (ZnFe2O4) nanocrystalline particles with the synthesized single source precursors. Structural studies using PXRD ascertained the predominant crystal phase to be spinel. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed a mean nanoparticle size of 18 ± 2 nm. Magnetic measurements revealed a weak magnetic behavior in the synthesized spinels. In the aqueous phase, the spinels exhibited catalytic activity, reducing 4-nitrophenol (4-NP) in the presence of NaBH4 at room temperature. Additionally, the study demonstrated that the catalyst can be recovered and reused for five cycles with a more than 85% conversion efficiency.  相似文献   
3.
《中国化学快报》2020,31(7):1768-1772
In recent years, the research of nitrogen reduction reaction (NRR) under ambient conditions has attracted wide attention for their relatively low energy consumption, in which rational design of electrocatalysts is the key to achieve high-performance NRR. Metal-organic frameworks (MOFs), as a new kind of porous material, have been intensively studied in the past few decades owing to not only their structural versatility and tunability but also intrinsic porosity. Due to their structural features, MOFs also have potential applications in mild condition electrocatalysis of NRR. In this review, the recently experimental and theoretical studies of MOFs in NRR electrocatalysts are briefly summarized.  相似文献   
4.
The chemical and physical effects of ultrasound with a frequency above 16 kHz, higher than the audible frequency of the human ear, have proven to be a useful tool for variety of systems ranging from the application of ultrasound in environmental remediation to the cooperation of ultrasound waves with chemical processing regarding as sonochemistry. Ultrasound opened up new advances in textile wet processing including desizing, scouring, bleaching, dyeing, printing and finishing and also nanoprocessing including nanopretreatment, nanodyeing, nanoprinting and nanofinishing. Use of ultrasound appears to be a promising alternative technique to reduce energy, chemicals and time involved in various operations. Over the past years there has been an enormous effort on using sonochemistry for the synthesis of nanomaterials on various textile materials. In situ sonosynthesis of nanoparticles and nanocomposites on different textiles is a pioneering approach driving future investigations. With such wide range of applications and vast ever increasing publications, the objective of this paper is presenting a comprehensive review on ultrasound application in textile from early time to now by the main emphasis on the sonosynthesis of nanomaterials outlining directions toward future research.  相似文献   
5.
对硫化镉反蛋白石结构光子晶体薄膜进行了可控合成,用巯基乙酸修饰的纳米晶和P(St-MMA-SPMAP)高分子小球共组装,成功地构筑了反蛋白石结构并用于可见光光解水产氢。结果表明,在可见光(λ≥420 nm)照射下,Cd S-310反蛋白石结构薄膜的光解水产氢性能比硫化镉纳米颗粒提高了一倍。这主要是因为等级孔结构反蛋白石光子晶体特性对催化剂的光催化性能的提升:首先,反蛋白石的周期性结构增加了光子在材料中的传播,提高了催化剂对太阳光的利用率;同时,大孔孔壁是由纳米颗粒堆积而成的,在反应中提供了更多的反应活性位点;此外,孔结构有利于物质的传输和分子的吸附。  相似文献   
6.
Nanostructured BaTi1-xSnxO3 (x = 0, 0.05 & 0.075) were successfully synthesized using the modified Pechini processing method. The phase purity and symmetry were examined by X-ray diffraction and Raman spectroscopy. Tetragonal symmetry was obtained for BaTiO3 (BT) while orthorhombic symmetry for Sn doped BT. BT exhibits an up-shift of the Curie temperature towards high temperatures (TC = 139 °C). In contrast, a down-shift was recorded for Sn doped BT. Then, indirect electrocaloric (EC) adiabatic temperature change ΔT and the energy storage performances were determined based on ferroelectric hysteresis loops. Interestingly, large EC responsivity of ΔT/ΔE = 0.81 × 10−6 K m/V was obtained for the BT accompanied with a moderate stored energy of 23 mJ/cm3 but with a high energy efficiency of 67%. The incorporation of Sn in BT was found to broaden the EC responsivity and to improve the energy efficiency up to 90%, recorded for the 5% Sn doped BT.  相似文献   
7.
Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and drop interfaces are in many of these smart technologies the fundamental entities and help develop smart products of the everyday life.  相似文献   
8.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
9.
《印度化学会志》2023,100(3):100906
In this work, we report an electrochemical cholesterol biosensor based on cholesterol oxidase(ChOx) enzyme immobilized on TiO2- nanoparticles – reduced graphene oxide(rGO) – polypyrrole (PPy) nanocomposite modified electrode.The electrochemical properties of GCE modified PPy (PPy-GCE) were studied using CV (Cyclic Voltammetry) and DPV (Differential Pulse Voltammetry). The developed sensor exhibited piecewise linearity from 0.1 μM to 1 μM and from 1 μM to 600 μM with the sensitivity of 61.665 and 0.1466 (2 mA mM × cm) respectively. The limit of detection of the sensor was found to be 32 nm.  相似文献   
10.
采用原位限域生长策略制备了一系列有序介孔碳负载的超小MoO3纳米颗粒复合物(OMC-US-MoO3). 其中, 有序介孔碳被用作基质来原位限域MoO3纳米晶的生长. 依此方法制备的MoO3纳米晶具有超小的晶粒尺寸(<5 nm), 并在介孔碳骨架内具有良好的分散度. 制得的OMC-US-MoO3复合物具有可调的比表面积(428~796 m2/g)、 孔容(0.27~0.62 cm3/g)、 MoO3质量分数(4%~27%)和孔径(4.6~5.7 nm). 当MoO3纳米晶的质量分数为7%时, 所得样品OMC-US-MoO3-7具有最大的孔径、 最小的孔壁厚度和最规整的介观结构. 该样品作为催化剂时, 表现出优异的环辛烯选择性氧化性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号