首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1997篇
  免费   671篇
  国内免费   380篇
化学   2944篇
晶体学   9篇
力学   1篇
综合类   1篇
数学   8篇
物理学   85篇
  2024年   6篇
  2023年   79篇
  2022年   163篇
  2021年   233篇
  2020年   485篇
  2019年   281篇
  2018年   191篇
  2017年   107篇
  2016年   262篇
  2015年   235篇
  2014年   184篇
  2013年   162篇
  2012年   152篇
  2011年   136篇
  2010年   115篇
  2009年   74篇
  2008年   59篇
  2007年   40篇
  2006年   31篇
  2005年   20篇
  2004年   14篇
  2003年   5篇
  2002年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3048条查询结果,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(7):1768-1772
In recent years, the research of nitrogen reduction reaction (NRR) under ambient conditions has attracted wide attention for their relatively low energy consumption, in which rational design of electrocatalysts is the key to achieve high-performance NRR. Metal-organic frameworks (MOFs), as a new kind of porous material, have been intensively studied in the past few decades owing to not only their structural versatility and tunability but also intrinsic porosity. Due to their structural features, MOFs also have potential applications in mild condition electrocatalysis of NRR. In this review, the recently experimental and theoretical studies of MOFs in NRR electrocatalysts are briefly summarized.  相似文献   
2.
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF-8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one-step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF-8 layer with an enzyme concentration of 29±3 μg cm−2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β-d -glucose through the GOD@ZIF-8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers.  相似文献   
3.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
4.
Temperature sensors play a significant role in biology, chemistry, and engineering, especially those that can work accurately in a noninvasive manner. We adopted a photoinduced post-synthetic copolymerization strategy to realize a membranous ratiometric luminescent thermometer based on the emissions of two lanthanide ions. This novel mixed-lanthanide polyMOF membrane exhibits not only the integrity and temperature sensing behaviour of the Ln-MOF powder but also excellent mechanical properties, such as flexibility, elasticity, and processability. Moreover, the polyMOF membrane shows remarkable stability under harsh conditions, including high humidity, strong acid and alkali (pH 0–14), which allowed the mapping of temperature distributions in extreme circumstances. This work highlights a simple strategy for polyMOF membrane formation and pushes forward the further practical application of Ln-MOF-based luminescent thermometers in various fields and conditions.  相似文献   
5.
6.
BiVO4,a promising visible-light responding photocatalyst,has aroused extensive research interest because of inexpensiveness and excellent chemical stability.However,its main drawback is the poor photoinduced charge-transfer dynamics.Building nanostructures is an effective way to tackle this problem.Herein,we put forward a new method to prepare nanostructured BiVO4 from Bi-based metal-organic frameworks[Bi-MOF(CAU-17)]precursor.The as-prepared material has a rod-like morphology inherited from the Bi-MOF sacrificial template and consists of small nanoparticle as building blocks.Compared with its counterparts prepared by conventional methods,MOF-derived nanostructured BiVO4 shows better light absorption ability,narrower bandgap,and improved electrical conductivity as well as reduced recombination.Consequently,BiVO4 nanostructure demonstrates high photocatalytic activity under visible light towards the degradation of methylene blue.Methylene blue can be degraded up to 90%within 30 min with a reaction rate constant of 0.058 min-1.Moreover,the cycling stability of the catalyst is excellent to withstand unchanged degradation efficiency for at least 5 cycles.  相似文献   
7.
Metal–organic frameworks (MOFs) are a promising class of materials for many applications, due to their high chemical tunability and superb porosity. By growing MOFs as (thin-)films, additional properties and potential applications become available. Here, copper (II) 1,3,5-benzenetricarboxylate (Cu-BTC) metal–organic framework (MOF) thin-films are reported, which were synthesized by spin-coating, resulting in “nanowebs”, that is, fiber-like structures. These surface-mounted MOFs (SURMOFs) were studied by using photoinduced force microscopy (PiFM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The optimal concentration of precursors (10 mm ) was determined that resulted in chemically homogeneous, pure nanowebs. Furthermore, the morphology and (un)coordinated Cu sites in the web were tuned by varying the rotation speed of the spin-coating process. X-ray diffraction (XRD) analysis showed that rotation speeds ≥2000 rpm (with precursors in a water/ethanol solution) generate the catena-triaqua-μ-(1,3,5-benzenetricarboxylate)-copper(II), or Cu(BTC)(H2O)3 coordination polymer. X-ray photoelectron spectroscopy (XPS) highlighted the strong decrease in number of (defective) Cu+ sites, as the nanowebs mainly consist of coordinated Cu2+ Lewis acid sites (LAS) and organic linker–linker, for example, hydrogen-bonding, interactions. Finally, the Lewis-acidic character of the Cu sites is illustrated by testing the films as catalysts in the isomerization of α-pinene oxide. The higher number of LAS (≥3000 rpm), result in higher campholenic aldehyde selectivity reaching up to 87.7 %. Furthermore, the strength of a combined micro- and spectroscopic approach in understanding the nature of MOF thin-films in a spatially resolved manner is highlighted.  相似文献   
8.
High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification. Further analysis of extracted serum metabolic fingerprints successfully discriminated patients with gynecological cancers (GCs) from healthy controls and also differentiated three major subtypes of GCs. Given the low cost, high-throughput, and easy operation, our approach brings a new dimension to disease analysis and classification.  相似文献   
9.
Accurate determination of Sarcosine (SAR) in urine with high sensitivity and selectivity is important, because it was recently recommended as a prospective biomarker for prostate cancer (PCa) and significant for the early identification of PCa. In this study, an electrochemical sensor based on Fe3O4 incorporated metal–organic frameworks (MOFs) @molecularly imprinted polymer (MIP) was constructed for SAR detection. Magnetic Fe3O4 nanoparticles embedded zeolitic imidazolate framework-8 (ZIF-8) was used as the support of MIP. MIP provides specific recognition sites for template molecules SAR and MOFs increase the rate of mass transfer and adsorption capacity due to the porous structure. The synthesized super-magnetic Fe3O4@ZIF-8@MIP was self-assembled onto an Au electrode in magnetic field and used as the sensing unit of electrochemical sensor. Cyclic voltammetry was used to monitor the electrochemical behavior, and the binding of SAR resulted in a reduction in the measured current. The results revealed a wide linear range from 1 to 100 pM towards trace SAR determination, with extremely low limit of detection down to 0.4 pM. In conclusion, the Fe3O4@ZIF-8@MIP based sensor provides a selective, sensitive, and convenient method for SAR diagnosis and other cancer marker detection.  相似文献   
10.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号