首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   1篇
物理学   4篇
  2020年   1篇
  2014年   1篇
  2012年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

The propagation of magnetoacoustic (fast magnetohydrodynamic) waves in pair-ion (PI) fullerene plasma is studied in the linear and nonlinear regimes. The pair-ion (PI) fullerene plasma is theorized as homogeneous, magnetized, warm and collisionless. Employing multi-fluid magnetohydrodynamic model, the dispersion relation is obtained and wave dispersion effects which appear through ion inertial length are discussed. Using reductive perturbation technique (RPT), the Korteweg–de Vries (KdV) equation is derived and its solution for small but finite amplitude magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is presented. The compressive magnetoacoustic soliton (i.e. positive potential pulse) propagating with super Alfvénic speed is obtained in magnetized PI fullerene plasma. The variations in the amplitude and width of the magnetoacoustic soliton structures are also illustrated by using numerical values of the plasma parameters such as ions' density, temperature difference between fullerene ions and magnetic field intensity, which have been taken from the PI plasma experiments already published in the literature.  相似文献   
2.
Using hydrodynamic model of semiconductor plasmas and coupled-mode theory of interacting waves, we have analytically investigated parametric interaction in a magnetised piezoelectric semiconductor plasma in non-relativistic domain. The temperature dependence of momentum transfer collision frequency of electrons due to their heating by the pump is assumed to induce nonlinearity in the medium. We have derived a dispersion relation which finally gives four unstable acoustic modes; two forward amplifying modes and two backscattered attenuating modes. We have also obtained an expression for the critical pump amplitude ( ) at and around which gains and phase velocities of amplifying acoustic modes become least dependent on the pump amplitude and static magnetic field . The required can be readily obtained from a pulsed 10.6 μm CO2 laser. The magnetic field is found to shift the critical point towards lower pump amplitudes. Received 5 September 2000 and Received in final form 5 March 2001  相似文献   
3.
Magnetic properties of the grain oriented (GO) electrical steels are strongly affected by the stresses, both external and internal. The change is important even for the deformation resulting in stress level much lower than their yield limits. In this paper we present the results of investigation of the influence of compression and tension on the magnetoacoustic emission (MAE) signal properties. The experiment was performed with the help of bending machine in which the samples (0.3 mm thick, M140-30 S GO electrical steel) glued to the non-magnetic (austenitic steel) 8 mm thick bars were bent. The samples cut out in two directions (parallel and perpendicular to the rolling direction) were investigated. The elongation was measured directly with the help of tensometric bridge. Various parameters of the MAE signal, such as e.g. signal intensity and MAE peaks separation, have been examined.  相似文献   
4.
陈晶  刘国强 《应用声学》2014,33(2):112-119
感应式磁声成像(MAT-MI)是一种融合磁感应技术和超声断层扫描技术的新型生物电阻抗成像方法,兼具电阻抗功能成像和超声技术高空间分辨率的优点。重建涡流场有旋分量的模值可以避免洛伦兹力的散度在边界处的奇异性、能够获得分辨率更好的电导率图像。本文对涡流场有旋分量的方向进行了分析,对格林函数解的积分项进行化简,提出一种基于涡流场有旋分量模值的电导率重建方法。为了验证新方法的正确性,我们使用电导率具有空间分布的两种模型进行了数值模拟,并使用新方法快速地重建得到高精度的电导率分布。  相似文献   
5.
In this paper we investigate, numerically, the generation and propagation of acoustic and magnetoacoustic waves and their roles in the heating process of the chromosphere. The combined effects of viscosity, thermal conduction and a uniform horizontal magnetic field on an upward and a downward propagating wave in an isothermal atmosphere are considered. It is shown that when the heating mechanisms are dominated by the effects of thermal conduction.

The chromosphere atmosphere can be divided into three distinct regions, low, middle and high. The middle region acts like a semitransparent transition layer and it is produced by thermal conduction and connects middle and high chromosphere. In the transition region part of the energy transmitted upward, part is dissipated and the other part is reflected downward. Moreover, viscosity creates an absorbing and reflecting layer and the magnetic field forms a totally reflecting barrier because of its dissipationless nature. When the combined effects of the viscosity and magnetic field dominated the oscillatory process, thermal conduction can be eliminated because the solution decays exponentially with altitude before the effects of thermal conduction take place.

The formulation of the model leads to a system of differential equations of the velocity and temperature and it will be used for the numerical solutions, and for the analytical solutions we have a fourth order differential equation. The differential equations in both cases are linear but with exponential coefficients. Approximate and exact solutions of the mathematical model are studied, in low, middle, and high chromospheres, both numerically and analytically. The analysis of both studies is in complete agreement with previously observed and reported results and conclusions about the heating process of the chromosphere. The results of the numerical solutions are discussed in connection with the heating mechanisms of the three regions of the chromosphere. Finally, the case where the values of thermal conduction, viscosity and magnetic field are arbitrary is considered.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号