首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36123篇
  免费   2220篇
  国内免费   3440篇
化学   25512篇
晶体学   224篇
力学   576篇
综合类   114篇
数学   7041篇
物理学   8316篇
  2023年   340篇
  2022年   492篇
  2021年   1150篇
  2020年   854篇
  2019年   945篇
  2018年   631篇
  2017年   751篇
  2016年   862篇
  2015年   950篇
  2014年   1279篇
  2013年   2457篇
  2012年   1860篇
  2011年   1834篇
  2010年   1569篇
  2009年   2204篇
  2008年   2336篇
  2007年   2645篇
  2006年   2078篇
  2005年   1349篇
  2004年   1238篇
  2003年   1283篇
  2002年   1192篇
  2001年   1095篇
  2000年   798篇
  1999年   666篇
  1998年   627篇
  1997年   544篇
  1996年   579篇
  1995年   538篇
  1994年   515篇
  1993年   512篇
  1992年   481篇
  1991年   314篇
  1990年   241篇
  1989年   230篇
  1988年   201篇
  1987年   215篇
  1986年   222篇
  1985年   341篇
  1984年   238篇
  1983年   158篇
  1982年   293篇
  1981年   467篇
  1980年   432篇
  1979年   470篇
  1978年   369篇
  1977年   279篇
  1976年   239篇
  1974年   76篇
  1973年   152篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
采用浸渍法制备Fe-VOx/SAPO-34和Fe-VOx/TiO2脱硝催化剂,探究SAPO-34分子筛与TiO2两种载体负载铁钒基氧化物催化活性及抗碱性能的差异。借助X射线衍射(XRD)、X射线光电子能谱(XPS)、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、原位红外漫反射(in-situ DRIFTs)等表征手段对催化剂的骨架结构、表面物化性质、氧化还原能力以及对反应气体的吸脱附情况进行分析。结果表明:SAPO-34分子筛内部特定的孔道结构和稳定的骨架,有利于活性组分在载体上均匀分散,降低碱金属对表面活性中心的物理覆盖作用;同时其表面丰富的酸位点能够作为碱金属捕获位,保护催化剂表面的活性中心,保证催化剂的吸附-反应过程能够正常进行,从而使Fe-VOx/SAPO-34表现出良好的抗碱金属能力。  相似文献   
2.
Cobalt oxide (Co3O4) modified anatase titanium dioxide nanotubes (ATNTs) have been investigated for the electrochemical sensing of hydrogen peroxide (H2O2). ATNTs have been synthesized by a two-step anodization process. ATNTs were then modified with Co3O4 employing chemical bath deposition method. The structure and morphology of ATNTs and their modification with Co3O4 has been confirmed by X-ray diffraction by scanning electron microscopy. H2O2 sensing has been studied in 0.1 M PBS solution, by cyclic voltammetry and amperometry. Variation in the peak positions and current densities was observed with addition of H2O2 for Co3O4 modified ATNTs. Sensitivity and limit of detection improved with modification of ATNTs with Co3O4 with precursor concentration up to 0.8 M. However, at higher precursor concentrations sensitivity and limit of detection toward H2O2 deteriorated. Co3O4 Modified ATNTS using 0.8 M precursor concentration are comparatively more suitable for H2O2 sensing applications due to the optimum formation of Co3O4/ATNTs heterojunctions.  相似文献   
3.
In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.  相似文献   
4.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
5.
Although great progress has been made in the advancement of nanozymes, most of the studies focus on mimicking peroxidase, oxidase, and catalase, while relatively few studies are used to mimic laccase. However, the use of nanomaterials to mimic laccase activity will have great potential in environmental and industrial catalysis. Herein, Cu/CuO-graphene foam with laccase-like activity was designed for the identification of phenolic compounds and the detection of epinephrine. In a typical experiment, the formation mechanism of Cu/CuO-graphene foam was investigated during the pyrolysis process by thermogravimetric-mass spectrometry. As a laccase mimic, Cu/CuO-graphene foam exhibited excellent catalytic activity with a Michaelis-Menten constant and a maximum initial velocity of 0.17 mmol/L and 0.012 mmol∙L-1∙s-1, respectively. Based on this principle, Cu/CuO-graphene foam nanozyme could differentially catalyze phenolic compounds and 4-aminoantipyrine for simultaneous identification of phenolic compounds. Furthermore, a colorimetric sensing platform was fabricated for the quantitative determination of epinephrine, showing linear responses to epinephrine in the range of 3 mg/mL to 20 mg/mL with the detection limit of 0.2 mg/mL. The proposed Cu/CuO-graphene foam nanozyme could be applied for the identification of phenolic compounds and the detection of epinephrine, showing great potential applications for environmental monitoring, biomedical sensing, and food detection fields.  相似文献   
6.
Chinese Annals of Mathematics, Series B - In the present article, the authors find and establish stability of multiplier ideal sheaves, which is more general than strong openness.  相似文献   
7.
Three one-dimensional ladder-like coordination polymers consisting of Cd6 metalloring as the building unit, {[Cd4LCl4]·3H2O}n ( 1 ), {[Cd3L(ClO4)(H2O)]ClO4·3H2O}n ( 2 ), and {[Cd6(L)2(NO3)2(CH3OH)(H2O)](NO3)2·2CH3OH·5H2O}n ( 3 ), were solvothermally constructed from a carboxylic functionalized bisazamacrocyclic ligand 4,4′-bis((4,7-bis(2-carboxyethyl)-1,4,7-triazacyclonon-1-yl)methyl)-1,1′-biphenyl (H4L). These compounds dispersed in ethanol show the multiple emissions originating from the monomeric and intramolecularly overlapping biphenyl moieties which could be sensitively quenched by picric acid (PA) and 4-nitrophenol (4-NP) through the effective fluorescence resonance energy transfer process. The differential fluorescent responses of each compound on exposure to PA and 4-NP individually make the convenient ratiometric discrimination of two analytes based on the fluorescent intensity ratio (I320/I360) attainable, and 1 and 2 as ratiometric chemosensors for PA present a broad linear detection range from 4 to 300 μM with detection limits of 0.84 and 0.93 μM, respectively. Furthermore, the blue light emission of 1 under an ultraviolet lamp could be selectively quenched by PA even in the presence of all other interfering nitroaromatic pollutants, which empowers the fast visual detection of PA by naked eye.  相似文献   
8.
The synthesis and characterizations for a series of dinuclear gold (I)-di-NHC complexes, 1–8 through the trans-metalation method of their respective silver (I)-di-NHC complexes, i–viii are reported (where NHC = N-heterocyclic carbene). The successful complexation of a series of unusual non-symmetrical and symmetrical di-NHC ligands, 3,3'-(ethane-1,2-diyl)-1-alkylbenzimidazolium-1'-butylbenzimidazolium (with alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, benzyl) with the gold (I) ions are suggested by elemental analysis, Fourier transform-infrared, 1H- and 13C-NMR data. The 13C-NMR spectra of 1–8 show a singlet sharp peak in the range of 190.00–192.00 ppm, indicating the presence of a carbene carbon that bonded to the gold (I) ion. From single crystal X-ray diffraction data, the structure of complex 6 with the formula of [di-NHC-Au (I)]2·2PF6 is obtained [where NHC = 3,3'-(ethane-1,2-diyl)-1-hexylbenzimidazolium-1'-butylbenzimidazolium]. The photophysical study in solid state of 6 displays an intense photoluminescence with a strong emission maxima, λem = 480 nm, upon excitation at 340 nm at room temperature. Interestingly, the emission maximum at 77 K shows a structural character with a strong peak at 410 nm, a medium at 433 nm and a weak at 387 nm, accompanied by a tail band to about 500 nm.  相似文献   
9.
The three binary Tb/Er‐rich transition metal compounds Tb3Pd2 (triterbium dipalladium), Er3Pd2 (trierbium dipalladium) and Er6Co5–x (hexaerbium pentacobalt) crystallize in the space groups Pbam (Pearson symbol oP20), P4/mbm (tP10) and P63/m (hP22), respectively. Single crystals of Tb3Pd2 and Er6Co5–x suitable for X‐ray structure analysis were obtained using rare‐earth halides as a flux. Tb3Pd2 adopts its own structure type, which can be described as a superstructural derivative of the U3Si2 type, which is the type adopted by Er3Pd2. Compound Er6Co5–x belongs to the Ce6Co2–xSi3 family. All three compounds feature fused tricapped {TR6} (R = rare‐earth metal and T = transition metal) trigonal prismatic heterometallic clusters. R3Pd2 is reported to crystallize in the U3Si2 type; however, our more detailed structure analysis reveals that deviations occur with heavier R elements. Similarly, Er6Co5–x was assumed to be stoichiometric Er4Co3 = Er6Co4.5. Our studies reveal that it has a single defective transition‐metal site leading to the composition Er6Co4.72(2). LMTO (linear muffin‐tin orbital)‐based electronic structure calculations suggest the strong domination of heteroatomic bonding in all three structures.  相似文献   
10.
Huihui Zhu 《代数通讯》2018,46(8):3388-3396
Let R be an associative ring with unity 1 and let a,b,cR. In this paper, several characterizations for hybrid (b,c)-inverses of a are given. Also, the hybrid (b,c)-inverse of a is characterized by the group inverse of ab, under certain hypothesis. In particular, existence criteria for the the inverse along an element are obtained. Finally, we get the double commutant property and the reverse order law of annihilator (b,c)-inverses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号