首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  国内免费   9篇
化学   65篇
力学   2篇
物理学   39篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   10篇
  2008年   7篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1993年   2篇
  1991年   1篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(1):126038
In this report, the cube-like shaped α-Fe2O3 nanostructures were prepared by the simple microwave-assisted solvothermal method without using any surfactants. The as-prepared samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The well dispersed and size-controlled cubic-like shaped α-Fe2O3 nanostructures were obtained by systematic variation of solvents, reaction temperature and time. The magnetic studies manifest that the magnetic properties of α-Fe2O3 samples are strongly dependent on the shape and size of the nanostructures. The maximum coercivity (Hc) ∼5.6 kOe is observed for Fe-160-30 sample, which is originating from the varying synthesis conditions, oriented sub-particle structures, surface spin disorder, surface/interface anisotropy and interactions of the nanoparticles at the surface/interface of the nanostructures. Represented synthesis approach facilitates the preparation of nanostructured materials with controlled morphology and properties.  相似文献   
2.
Hematite(α-Fe_2O_3) is a promising photoanode for photoelectrochemical(PEC) water splitting.However,the severe charge recombination and sluggish water oxidation kinetics extremely limit its use in photohydrogen conversion.Herein,a co-activation strategy is proposed,namely through phosphorus(P)doping and the loading of CoAl-layered double hydroxides(CoAl-LDHs) cocatalysts.Unexpectedly,the integrated system,CoAl-LDHs/P-Fe_2O_3 photoanode,exhibits an outstanding photocurrent density of 1.56 mA/cm~2 at 1.23 V(vs.reversible hydrogen electrode,RHE),under AM 1.5 G,which is 2.6 times of pureα-Fe_2O_3.Systematic studies reveal that the remarkable PEC performance is attributed to accelerated surface OER kinetics and enhanced carrier separation efficiency.This work provides a feasible strategy to enhance the PEC performance of hematite photoanodes.  相似文献   
3.
周定华  范科 《催化学报》2021,42(6):904-919
为了解决能源危机与环境污染问题,发展一种可再生的清洁能源至关重要.太阳能是一种取之不尽用之不竭的清洁能源,而氢气是一种良好的能源载体.利用太阳能光电催化水分解制氢,是一项有望能够解决能源与环境问题的技术,具有很大的应用前景.其中,氧化铁因为具有合适的能带位置与带隙、良好的稳定性与廉价无毒等优点,成为一种理想的光阳极材料.但是,在实际的测试中,氧化铁仅仅只能得到一个较低的光电转换效率,这可能是因为其较短的空穴扩散距离、较低的电导率以及极度缓慢的水氧化反应动力学所致.整个光电催化水氧化可分为三个过程,即光吸收过程、电荷分离过程以及表面空穴注入过程.这三个过程的效率共同决定了器件的太阳能转化效率.鉴于此,本文将从如何提高这三个效率的角度出发,总结近期研究报道中提高氧化铁光电催化分解水效率的一些策略.光吸收过程是指半导体中价带的电子在吸收具有一定能量的光子后发生跃迁,产生空穴-电子对的过程.其光子的损失主要来源于光的反射、透射以及半导体吸收边的限制.提高光吸收效率的主要策略包括制备具有特定纳米结构的氧化铁电极、利用表面等离子体共振效应以及组成双光吸收系统和掺杂等.电荷分离过程指的是受光激发产生的空穴电子对,在内建电场的作用下发生电荷分离,即光生空穴流向电极表面,光生电子流向半导体内部并从外电路导出.电荷分离效率的损失主要来源于光生载流子在迁移过程中的复合.因此,为了提高电荷分离效率,常见的策略是提高载流子在电荷分离过程中的复合时间τ1和减少电荷迁移到表面(空穴)或者基底(电子)的时间τ2.具体的策略包括制备特定的纳米结构(缩短体表相距离,减少τ2)、构建异质结(增强能带弯曲,提高τ1和减少τ2)、掺杂(减少τ2)和钝化复合中心(提高τ1)等.表面空穴注入是指到达表面的光生空穴发生水氧化反应生成氧气的过程.除了空穴注入外,表面还可能存在复合与逆反应过程.因此,为了提高表面空穴注入效率,我们既可以提高水氧化反应动力学,具体的手段包括引入水氧化催化剂、F掺杂和碱处理等;也可以采用减少复合反应的策略,具体的方法包括引入钝化层、酸处理和高温热处理等;还可以采用减少逆反应的方法,最常见的手段就是在基底与氧化铁层之间引入电子阻挡层.上述三种途径都能提高表面空穴注入效率.最后,通过结合上述的一些策略,目前得到的最高性能的氧化铁电极在1.23 V(相对于可逆氢电极)能够达到6 mA cm?2的光电催化分解水电流,但这个值依然明显低于氧化铁的理论值(12.6 mA cm?2).这可能是由于体相复合所致.除此之外,氧化铁表面的水氧化机理现在依然不清晰,这些都是需要我们在未来解决的问题.  相似文献   
4.
Hematite (α-Fe2O3) is found to be one of the most promising photoanode materials used for the application in photoelectrochemical (PEC) water splitting due to its narrow band gap energy of 2.1 eV, which is capable to harness approximately 40% of the incident solar light. This paper reviews the state-of-the-art progress of the electrochemically synthesized pristine hematite photoanodes for PEC water splitting. The fundamental principles and mechanisms of anodic electrodeposition, metal anodization, cathodic electrodeposition and potential cycling/pulsed electrodeposition are elucidated in detail. Besides, the influence of electrodeposition and annealing treatment conditions are systematically reviewed; for examples, electrolyte precursor composition, temperature and pH, electrode substrate, applied potential, deposition time as well as annealing temperature, duration and atmosphere. Furthermore, the surface and interfacial modifications of hematite-based nanostructured photoanodes, including elemental doping, surface treatment and heterojunctions are elaborated and appraised. This review paper is concluded with a summary and some future prospects on the challenges and research direction in this cutting-edge research hotspot. It is anticipated that the present review can act as a guiding blueprint and providing design principles to the scientists and engineers on the advancement of hematite photoanodes in PEC water splitting to resolve the current energy- and environmental-related concerns.  相似文献   
5.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   
6.
In this investigation, the structural characteristics of α- Fe2O3 nanoparticles synthesised by a mechanical milling have been explored. The structure and morphology of samples were characterized by X-ray powder diffraction, field-emission scanning electron microscope (FE-SEM) and FT-IR measurements. The crystallite size and internal strain were evaluated by XRD patterns using Williamson-Hall and Scherrer methods. The results did not reveal any phase change during the milling. The average particle size decreases with a prolongation of milling times, while the lattice parameters and internal strain increase. It was found that using this method allowed the formation of hematite nanoparticles.  相似文献   
7.
The transformation from ferrihydrite to various iron oxides and iron oxyhydroxides has been given much attention not only in environmental science and geochemistry but also in biology and material science. This laboratory study attempted to investigate Fe(II)-induced transformation of ferrihydrite in sulfate-rich medium. The results indicate that the transformation in sulfate-rich medium differs from that in Cl medium in the species, the amount and the morphology of products and transformation rate. Lepidocrocite is a main ingredient in the product in Cl medium at room temperature (RT), while goethite is the only product in SO42− medium at RT. Goethite particles obtained in Cl medium are star-like but rod-like in SO42− medium. The transformation rate in the latter medium is obviously slower than that in the former medium. The formation of lepidocrocite depends on both the ionic strength of the system and the dissolution rate of ferrihydrite.  相似文献   
8.
Crystalline zinc silicate, Zn2SiO4, and zinc ferrite, ZnFe2O4, were prepared and characterized. The solubilities of these phases were measured using flow-through apparatus from 50 to 350 °C in 100 °C intervals over a wide range of pH. Both solid phases dissolve incongruently, presumably to form ZnO(s) and Fe2O3(s) (or the corresponding hydroxide phases at low temperature), respectively. The respective concentrations of zinc(II) and iron(III) matched those of ZnO(cr) and Fe2O3(s) (≥150 °C) reported in the literature, whereas the corresponding Si(IV) and Zn(II) concentrations were at least an order of magnitude below the solubility limits for their pure oxide phases. Therefore, the solubility constants for zinc silicate and ferrite were determined with respect to the known solubility constants for ZnO(cr) and Fe2O3(s) (≥150 °C), respectively, and the corresponding concentrations of Si(IV) and Zn(II) measured in this study. The results of independent experiments, as well as those reported in the literature provide insights into the mechanism(s) of formation of zinc silicate and ferrite in the primary circuits of nuclear reactors. D.A. Palmer is retired.  相似文献   
9.
A simple experimental approach was developed to determine the adhesion rate of particles onto massive substrate. Turbidimetry measurements are used to follow the evolution of particle concentration in a suspension in dynamic contact with the walls of a vessel made of different materials. This method allows to rapidly obtain qualitative results about the adhesion of metallic oxides particles on massive substrates. Adhesion of particles of charged latex onto glass was used to validate the approach and was shown to be a method to determine isoelectric points (IEP) of massive substrates. Then, the adhesion of an iron oxide (hematite) particles onto several substrates was studied to determine the reactivity of current labware (glass, polypropylene) and on a metal (aluminum) commonly found in industrial fouling problems. Adhesion of hematite was found to be pH-dependant, and occurs only below ca. 6 (glass) or 7 (polypropylene), and above 7 (aluminum). DLVO calculations were performed to model the hematite/water/glass system and are consistent with the experimental results. Experiments at temperature 7–50 °C have shown an increasing of the adhesion rate from 7 to 40 °C, then a constant value until 50 °C.  相似文献   
10.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号