首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5883篇
  免费   228篇
  国内免费   338篇
化学   5490篇
晶体学   13篇
力学   168篇
综合类   4篇
数学   45篇
物理学   729篇
  2023年   74篇
  2022年   66篇
  2021年   49篇
  2020年   92篇
  2019年   73篇
  2018年   59篇
  2017年   84篇
  2016年   155篇
  2015年   171篇
  2014年   128篇
  2013年   216篇
  2012年   269篇
  2011年   354篇
  2010年   316篇
  2009年   365篇
  2008年   277篇
  2007年   318篇
  2006年   253篇
  2005年   220篇
  2004年   196篇
  2003年   164篇
  2002年   111篇
  2001年   98篇
  2000年   116篇
  1999年   79篇
  1998年   101篇
  1997年   113篇
  1996年   109篇
  1995年   104篇
  1994年   108篇
  1993年   105篇
  1992年   67篇
  1991年   79篇
  1990年   72篇
  1989年   76篇
  1988年   112篇
  1987年   93篇
  1986年   97篇
  1985年   127篇
  1984年   118篇
  1983年   73篇
  1982年   114篇
  1981年   112篇
  1980年   101篇
  1979年   115篇
  1978年   69篇
  1977年   13篇
  1976年   29篇
  1973年   18篇
  1972年   16篇
排序方式: 共有6449条查询结果,搜索用时 15 毫秒
1.
Uniform flower-like α-Fe2O3 architectures with self-assembled core-shell nanorods are constructed and successfully prepared via the facile process. The concentration of Fe salt plays a great significance for morphological evolution from nanorods to self-assembled microflowers. Flower-like α-Fe2O3/ZnFe2O4 consisting of α-Fe2O3 core and ZnFe2O4 shell nanorods are derived from FeOOH/ZIF-8 precursors. The detailed studies reveal that the tunable growth of ZIF-8 nanoparticles on three-dimensional FeOOH microflowers at room temperature and the availble calcination regulation are responsible for the formation of core-shell Fe2O3/ZnFe2O4 composites. The highest response value of flower-like α-Fe2O3/ZnFe2O4 architectures to 100 ppm triethylamine (TEA) has been improved to 141 at 280 °C, which is calculated to be 6.2 times compared with flower-like α-Fe2O3 architectures (22.7). The enhanced gas-sensing mechanism of α-Fe2O3/ZnFe2O4 composites can be attributed to the typical microflowers structures, the large specific surface area, the effective heterojunctions between α-Fe2O3 core and ZnFe2O4 shell, and the improved electron transfer process.  相似文献   
2.
Ultrasonic emulsification (USE) assisted by cavitation is an effective method to produce emulsion droplets. However, the role of gas bubbles in the USE process still remains unclear. Hence, in the present paper, high-speed camera observations of bubble evolution and emulsion droplets formation in oil and water were used to capture in real-time the emulsification process, while experiments with different gas concentrations were carried out to investigate the effect of gas bubbles on droplet size. The results show that at the interface of oil and water, gas bubbles with a radius larger than the resonance radius collapse and sink into the water phase, inducing (oil–water) blended liquid jets across bubbles to generate oil-in-water-in-oil (O/W/O) and water-in-oil (W/O) droplets in the oil phase and oil-in-water (O/W) droplets in the water phase, respectively. Gas bubbles with a radius smaller than the resonance radius at the interface always move towards the oil phase, accompanied with the generation of water droplets in the oil phase. In the oil phase, gas bubbles, which can attract bubbles nearby the interface, migrate to the interface of oil and water due to acoustic streaming, and generate numerous droplets. As for the gas bubbles in the water phase, those can break neighboring droplets into numerous finer ones during bubble oscillation. With the increase in gas content, more bubbles undergo chaotic oscillation, leading to smaller and more stable emulsion droplets, which explains the beneficial role of gas bubbles in USE. Violently oscillating microbubbles are, therefore, found to be the governing cavitation regime for emulsification process. These results provide new insights to the mechanisms of gas bubbles in oil–water emulsions, which may be useful towards the optimization of USE process in industry.  相似文献   
3.
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble “mystery boxes”. Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.  相似文献   
4.
Separation of acetylene(C2H2) from carbon dioxide(CO2) by adsorbents is very challenging owing to their high similarity on molecular shape and dimension. Exploring inexpensive and easily available porous materials is of importance to facilitate the practical implementation of the challenging but energy-efficient separation. Herein, we utilize an easily available porous material[Zn3(HCOO)6] for the selective separation of C2H2 over CO2. Because of the pore confinement in[Zn3(HCOO)6](pore size of 0.47 nm) and accessible oxygen sites for preferential binding of C2H2, this material exhibits high low-pressure uptake for C2H2(63 cm3/cm3 at 10 kPa and 298 K) and high C2H2/CO2 selectivity(7.4 under ambient conditions) that is comparable to those of out-performing porous materials. The efficient separation of[Zn3(HCOO)6] for C2H2/CO2 mixture has also been confirmed by the breakthrough experiments.  相似文献   
5.
韩鹏程  燕群  彭涛  宁方立 《应用声学》2022,41(4):602-609
为了克服现有气体泄漏检测方法的不足,提出一种基于卷积神经网络的气体泄漏超声信号识别方法。在设计卷积神经网络网络结构时,通过多次预训练确定网络层数、卷积核数目和尺寸、全连接层神经元数目。同时,选择Inception模块平衡网络宽度和深度,防止过拟合的同时提高网络对尺度的适应性。通过输气管道泄漏实验平台模拟工况中常见的阀门泄漏和垫片泄漏,利用短时傅里叶变换进行时频图表征,在此基础上,建立二分类模型和不同泄漏类型的三分类模型。结果表明,相比二分类模型,不同泄漏类型的三分类模型识别准确率有所降低,添加Inception模块可以有效提高三分类模型的性能。  相似文献   
6.
利用十二烷基苯磺酸钠(SDBS)为模板剂, 研究了SDBS的浓度、 Ca 2+和Si O 3 2 - 离子的浓度、 是否搅拌和反应时间等条件对水合硅酸钙(CSH)形貌特征和分散性能的影响, 并提出了不同CSH球壳形貌特征的形成机理. 结果显示, 溶液中Na2SiO3·9H2O浓度增大、 SDBS浓度增大及反应时间延长均会使CSH的结晶度变好, 聚合度增大, Q 2结构的相对含量增加, 其中Na2SiO3·9H2O和SDBS浓度是主要控制因素. SDBS在溶液中形成的球形胶束具有极强的模板作用, 能有效改变CSH的结晶生长方式; 通过调节SDBS浓度和钙硅比例, 并适当延长CSH的生长时间, 能够获得球壳完整、 分散性好且稳定性强的CSH.  相似文献   
7.
《中国化学快报》2020,31(4):922-930
MXenes have emerged as versatile 2D materials that are already gaining paramount attention in the areas of energy,catalyst,electromagnetic shielding,and sensors.The unique surface chemistry,graphene-like mo rphology,high hydrophilicity,metal-like conductivity with redox capability identifies MXenes,as an ideal material for surface-related applications.This short review summarizes the most recent reports that discuss the potential application of MXenes and their hybrids as a transducer material for advanced sensors.Based on the nature of transducing signals,the discussion is categorized into three sections,which include electrochemical(bio) sensors,gas sensors,and finally,electro-chemiluminescence fluorescent sensors.The review provides a concise summary of all the analytical merits obtained subsequent to the use of MXenes,followed by endeavors that have been made to accentuate the future perspective of MXenes in sensor devices.  相似文献   
8.
Based on the mechanical experimental results of methane hydrate (MH), a bond contact model considering the rate-dependency of MH is proposed. A CFD–DEM scheme considering fluid compressibility is used to simulate a series of undrained cyclic shear tests of numerical methane-hydrate-bearing sediment (MHBS) samples. The dynamic behavior, including stress–strain relationship, dynamic shear modulus, and damping ratio, is investigated. In addition, the force chains, contact fabric and averaged pure rotation rate (APR) are examined to investigate the relationships between micromechanical variables and macromechanical responses in the DEM MH samples. The effects of temperature, confining pressure and MH saturation are also analyzed. Due to the micro-structural strengthening by the MH bonds, no obvious change in microscopic quantities is observed, and the samples remain at the elastic stage under the applied low-shear stress level. When confining pressure and MH saturation increase, the dynamic elastic modulus increases, while the damping ratio decreases. An increasing temperature (leading to weakening of MH bonds) can lower the dynamic elastic modulus, but has almost no impact on the damping ratio. On the contrary, an increasing cyclic shear stress level lowers the damping ratio, but has almost no effect on the dynamic elastic modulus.  相似文献   
9.
A new approach for simulating the formation of a froth layer in a slurry bubble column is proposed. Froth is considered a separate phase, comprised of a mixture of gas, liquid, and solid. The simulation was carried out using commercial flow simulation software (FIRE v2014) for particle sizes of 60–150 μm at solid concentrations of 0–40 vol%, and superficial gas velocities of 0.02–0.034 m/s in a slurry bubble column with a hydraulic diameter of 0.2 m and height of 1.2 m. Modelling calculations were conducted using a Eulerian–Eulerian multiphase approach with k–ε turbulence. The population balance equations for bubble breakup, bubble coalescence rate, and the interfacial exchange of mass and momentum were included in the computational fluid dynamics code by writing subroutines in Fortran to track the number density of different bubble sizes. Flow structure, radial gas holdup, and Sauter mean bubble diameter distributions at different column heights were predicted in the pulp zone, while froth volume fraction and density were predicted in the froth zone. The model was validated using available experimental data, and the predicted and experimental results showed reasonable agreement. To demonstrate the effect of increasing solid concentration on the coalescence rate, a solid-effect multiplier in the coalescence efficiency equation was used. The solid-effect multiplier decreased with increasing slurry concentration, causing an increase in bubble coalescence efficiency. A slight decrease in the coalescence efficiency was also observed owing to increasing particle size, which led to a decrease in Sauter mean bubble diameter. The froth volume fraction increased with solid concentration. These results provide an improved understanding of the dynamics of slurry bubble reactors in the presence of hydrophilic particles.  相似文献   
10.
In this study, we perform a series of mass-balance-type calculations, in order to estimate the minimum volume of liquid water required to dissolve completely a single methane gas bubble, located inside different types of domains that are near or under hydrate equilibrium pressure/temperature conditions. We examine the case of methane bubble dissolution in the bulk, along with the cases of methane bubble dissolution within simple/regular networks of pores, where all pores have the same size. In our calculations, we consider experimental values for the equilibrium solubilities of methane in water, along the hydrate-forming line, as well as, values obtained from predictive tools that are based on different thermodynamic models. The effect of aqueous NaCl solutions on the results is also investigated. As a result of the relatively low solubility of methane in water, large volumes of water are required for complete dissolution of a methane bubble.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号