首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   23篇
  国内免费   100篇
化学   292篇
综合类   1篇
物理学   6篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   10篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   15篇
  2013年   13篇
  2012年   17篇
  2011年   21篇
  2010年   20篇
  2009年   16篇
  2008年   12篇
  2007年   27篇
  2006年   17篇
  2005年   25篇
  2004年   10篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   1篇
  1986年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
1.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法。直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势。综述了近年来Fe基催化剂、Co基催化剂在CO直接制备低碳烯烃中的研究进展。分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、Co基催化剂的低碳烯烃选择性。  相似文献   
2.
光驱动C1转换到高附加值化学品的研究进展   总被引:1,自引:0,他引:1  
阐述了光驱动C1化学的最新研究进展, 分别对光驱动费托合成、 水煤气变换、 二氧化碳加氢、 甲烷重整和甲醇重整制氢的研究进行了综述, 提出了当前研究存在的问题及发展方向.  相似文献   
3.
自2012年浙江大学肖丰收教授(J.Am.Chem.Soc.,2012,134,15173-15176)首次提出无溶剂法合成分子筛以来,该路线已备受关注.无溶剂合成分子筛方法具有废液少、产率高、安全系数高等优点.本文针对合成气经费托路线(FTS)一步法制备富含异构烷烃汽油馏分的研究,通过无溶剂研磨法制备了分子筛封装金属催化剂.一般来说,烷烃异构化催化剂的性能主要取决于分子筛的孔道结构及其酸性,其次是分子筛晶粒大小、结晶度和表面性质等因素.本文对比了三种具有相同拓扑结构的MFI分子筛(Silicalite-1,HZSM-5和NaZSM-5)对汽油和异构烷烃选择性的影响规律.结果显示,在CO转化率(~30%)近似相同的情况下,具有最弱酸性的Silicalite-1封装的Co颗粒表现出最高的汽油选择性(~70%)和异构烷烃选择性(~30.7%).这意味着正构烷烃异构化反应只需要弱酸即可实现,较强的酸性则会使其发生过度裂解反应.Py-IR谱图显示,Silicalite-1在1445 cm-1附近的L酸是区别于NaZSM-5和HZSM-5的一个重要酸性位,可作为FTS路线制备富含异构烷烃汽油的一个关键参数.另外,与封装型(Co@MFI)催化剂相比,浸渍型催化剂(Co/MFI)的汽油选择性明显偏低,可能与金属活性位与分子筛酸性位之间的距离有直接关系.因此,无溶剂合成分子筛是一条具有前景和适宜放大的催化剂合成路线.对于合成气经费托路线制取富含异构烷烃汽油反应,正构烷烃在分子筛催化剂上的裂解和异构化之间的竞争反应是核心问题.未来有待突破的研究方向包括:(1)多支链异构烷烃的合成,目前对于有效调控多支链烷烃的生成关注较少;(2)反应路线的设计,合成气经甲醇路线,联合甲醇制汽油(MTG)反应获得异构烷烃;(3)裂解反应的抑制;(4)分子筛孔道/笼对异构烷烃选择性的调控机制.  相似文献   
4.
王保力 《化学通报》2020,83(4):296-307
一氧化碳是发展可持续化学经济的重要原料。人们希望能够将一氧化碳催化转变成高附加值化学品,从而减少石油等化石资源对人类的束缚。研究均相金属配合物与一氧化碳的反应能够使人们了解一氧化碳转变及利用机理,并开发新催化剂高效地利用一氧化碳资源。本文从金属配合物与一氧化碳反应的活性点出发,分别讨论不同类型的金属配合物与一氧化碳的反应,以求让人们在分子水平上了解一氧化碳的基本反应原理;并总结了该领域存在的难点问题,展望了未来,希望更多的科研工作者投入其中,从而实现利用一氧化碳合成出各种各样的化学品和材料。  相似文献   
5.
刘军辉  宋亚坤  宋春山  郭新闻 《应用化学》2020,37(10):1099-1111
CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。  相似文献   
6.
通过共沉淀法或聚乙烯醇(PVA)辅助共沉淀法分别制备了Fe2O3和FeCu催化剂,结合BET、XRD、SEM、H2-TPR等表征手段,研究了Cu助剂对PVA辅助的沉淀铁催化剂的织构性质、物相结构、形貌特征、还原行为以及F-T合成反应性能的影响。结果表明,Cu助剂的加入增大了铁基催化剂中α-Fe2O3的晶粒,减小了催化剂的BET比表面积和孔容,增大了孔径;改变了铁基催化剂的形貌;促进了铁基催化剂在H2中的还原。反应过程中,在催化剂中只添加Cu助剂时,有利于提高催化剂的反应活性,而当同时加入Cu助剂和PVA时,由于Cu助剂与PVA较强的相互作用,反而降低了催化剂的反应活性,且催化剂的选择性向轻质烃方向偏移。  相似文献   
7.
在不同的水热合成时间下, 以铁铝合金为铁源和铝源, 四丙基氢氧化铵为分子筛的模板剂和抽提合金中的铝的碱, 一步制得了以骨架铁为核、不同厚度的HZSM-5分子筛为壳的Raney Fe@HZSM-5催化剂. 采用元素分析、氮物理吸附、X射线粉末衍射、氨脱附、扫描电子显微镜等手段, 考察了水热时间对催化剂基本物化性质的影响. 随着水热时间的延长, HZSM-5分子筛壳层不断增厚, 结晶度不断增大, 但分子筛组成基本不变, 酸量与分子筛壳层厚度正相关. 在费托合成反应中, Raney Fe@HZSM-5核壳催化剂上的CO转化率和汽油段产物选择性随分子筛壳层厚度呈火山型变化趋势, 说明反应需要适宜的酸量, 酸量过低或过高均不利于得到高的催化活性及汽油段产物选择性. 在水热合成时间为4 d制得的Raney Fe@HZSM-5核壳催化剂上, 当CO转化率为92%时, C5~C11汽油段产物选择性可达71%, 异正比为1.9. 当合成气中的n(H2)/n(CO)比从2降为1时, 汽油段产物选择性和异正比进一步提高至73%和2.1, 显示了将该催化剂用于煤基或生物质基合成气转化为高辛烷值汽油的良好潜力.  相似文献   
8.
费托合成可以将煤炭或者生物质气化得到的合成气转化为α-烯烃等重要的化工产品。研究将费托合成和氮气吹扫操作组合成一脉冲过程,在稳定的操作状态下保证费托合成和氮气吹扫交替进行。在传统的费托合成条件下(反应气速为2 000 h-1,温度为497 K, 压力为 2.0 MPa, 氢碳体积比为2.0)考察了Fe-Co催化剂在脉冲过程中费托合成的活性和选择性。结果表明,N2吹扫温度和压力分别为517 K和0.2 MPa下的费托合成的C3烯烷比是未脉冲的相同反应条件下的九倍左右。同时,反应过程中CH4的选择性和CO的转化率有所下降。在此基础上,通过间歇反应在固定床反应器中进行该脉冲过程,实验结果表明,利用脉冲操作在费托反应中可以获得更高的烯烃选择性。  相似文献   
9.
中国需要自主发展煤炭间接液化工业化技术,以缓解油品供应的紧张局面,保障经济的可持续发展.近年来中国成功地进行了煤炭间接液化示范厂的运行,掌握了成熟可靠的费托合成催化剂技术和大型合成反应器技术,正在设计和建设百万吨级合成油商业厂.本文简要介绍了国内外煤炭间接液化技术发展状态,评述了我国煤炭间接液化技术在费托合成反应机理、催化剂研制、反应动力学、反应器设计、系统工艺集成、油品加工等方面从基础到工程技术的研究进展,分析了我国建设百万吨级煤炭间接液化商业厂需要解决的关键基础和工程技术问题,并对我国未来煤制油产业化发展的前景以及所面临的挑战与对策进行了展望.  相似文献   
10.
通过等体积浸渍法制备了双介孔钴基催化剂,采用XRD、BET、SEM、H2-TPR等手段考察了催化剂的性质,并研究了还原温度对催化剂结构及费托合成催化性能的影响。结果表明,随着还原温度的提高,催化剂活性位增加,活性增加,但增加到一定程度后活性降低,而甲烷选择性随着还原温度的提高逐渐增加,这是反应过程中催化剂表面存在的钴氧化物,使得水煤气反应变得活跃,烃产物移向低碳烃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号