首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   142篇
  国内免费   80篇
化学   346篇
晶体学   5篇
力学   3篇
综合类   1篇
数学   1篇
物理学   582篇
  2023年   11篇
  2022年   12篇
  2021年   26篇
  2020年   46篇
  2019年   39篇
  2018年   28篇
  2017年   29篇
  2016年   41篇
  2015年   27篇
  2014年   29篇
  2013年   35篇
  2012年   32篇
  2011年   72篇
  2010年   36篇
  2009年   51篇
  2008年   56篇
  2007年   66篇
  2006年   48篇
  2005年   41篇
  2004年   34篇
  2003年   27篇
  2002年   17篇
  2001年   16篇
  2000年   16篇
  1999年   18篇
  1998年   16篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有938条查询结果,搜索用时 15 毫秒
1.
Colloidal quantum dots (QDs) have unique optical and electrical properties with promising applications in next-generation semiconductor technologies, including displays, lighting, solar cells, photodetectors, and image sensors. Advanced analytical tools to probe the optical, morphological, structural, compositional, and electrical properties of QDs and their ensemble solid films are of paramount importance for the understanding of their device performance. In this review, comprehensive studies on the state-of-the-art metrology approaches used in QD research are introduced, with particular focus on time-resolved (TR) and spatially resolved (SR) spectroscopy and microscopy. Through discussing these analysis techniques in different QD system, such as various compositions, sizes, and shell structures, the critical roles of these TR-spectroscopic and SR-microscopic techniques are highlighted, which provide the structural, morphological, compositional, optical, and electrical information to precisely design QDs and QD solid films. The employment of TR and SR analysis in integrated QD device systems is also discussed, which can offer detailed microstructural information for achieving high performance in specific applications. In the end, the current limitations of these analytical tools are discussed, and the future development of the possibility of interdisciplinary research in both QD fundamental and applied fields is prospected.  相似文献   
2.
Site-specific isotopic labeling of molecules is a widely used approach in IR spectroscopy to resolve local contributions to vibrational modes. The induced frequency shift of the corresponding IR band depends on the substituted masses, as well as on hydrogen bonding and vibrational coupling. The impact of these different factors was analyzed with a designed three-stranded β-sheet peptide and by use of selected 13C isotope substitutions at multiple positions in the peptide backbone. Single-strand labels give rise to isotopically shifted bands at different frequencies, depending on the specific sites; this demonstrates sensitivity to the local environment. Cross-strand double- and triple-labeled peptides exhibited two resolved bands that could be uniquely assigned to specific residues, the equilibrium IR spectra of which indicated only weak local-mode coupling. Temperature-jump IR laser spectroscopy was applied to monitor structural dynamics and revealed an impressive enhancement of the isotope sensitivity to both local positions and coupling between them, relative to that of equilibrium FTIR spectroscopy. Site-specific relaxation rates were altered upon the introduction of additional cross-strand isotopes. Likewise, the rates for the global β-sheet dynamics were affected in a manner dependent on the distinct relaxation behavior of the labeled oscillator. This study reveals that isotope labels provide not only local structural probes, but rather sense the dynamic complexity of the molecular environment.  相似文献   
3.
The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)2(DMAP)2]2+ complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the 3MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)2(DMAP)]2+. The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst.  相似文献   
4.
5.
As one of the biological endogenous pigments, biliverdin (BV) and its dimethyl ester (BVE) have extremely weak fluorescence in solution with quantum yield less than 0.01%. However, the situation reverses with the addition of zinc ions. The strength for fluorescence of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex is greatly enhanced and fluorescence quantum yield can increase to \begin{document}$ \sim $\end{document}5%. Herein, we studied ultrafast excited state dynamics of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex in ethanol, \begin{document}$ n $\end{document}-propanol, and DMSO solutions in order to reveal the mechanism of fluorescence quantum yield enhancement. The results show that BVE can form a stable coordination complex with zinc with 1:1 stoichiometry in solution. BVE is structurally and energetically more stable in the complex. Using picosecond time-resolve fluorescence and femtosecond transient absorption spectroscopy, we show that smaller non-radiative rate constant of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex in DMSO is the key to increasing its fluorescence quantum yield and the excited state decay mechanism is also revealed. These results provide valuable information about the fluorescence property change after BVE binding to metal ions and may provide a guidance for the study of phytochromes or other fluorescence proteins in which BV/BVE acts as chromophores.  相似文献   
6.
7.
8.
The Fischer–Tropsch process, or the catalytic hydrogenation of carbon monoxide (CO), produces long chain hydrocarbons and offers an alternative to the use of crude oil for chemical feedstocks. The observed size dependence of cobalt (Co) catalysts for the Fischer–Tropsch reaction was studied with colloidally prepared Co nanoparticles and a chemical transient kinetics reactor capable of measurements under non-steady-state conditions. Co nanoparticles of 4.3 nm and 9.5 nm diameters were synthesized and tested under atmospheric pressure conditions and H2/CO=2. Large differences in carbon coverage (ΘC) were observed for the two catalysts: the 4.3 nm Co catalyst has a ΘC less than one while the 9.5 nm Co catalyst supports a ΘC greater than two. The monomer units present on the surface during reaction are identified as single carbon species for both sizes of Co nanoparticles, and the major CO dissociation site is identified as the B5-B geometry. The difference in activity of Co nanoparticles was found to be a result of the structure sensitivity caused by the loss of these specific types of sites at smaller nanoparticle sizes.  相似文献   
9.
A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method.By combining a kHz pulsed valve and an ICCD camera,this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz,totally compatible with the fs Ti:Sapphire laser system,facilitating time-resolved studies in gas phase which are usually time-consuming.Time-resolved velocity map imaging study of NH3 photodissociation at 200 nm was performed and the time-resolved total kinetic energy release spectrum of H+NH2 products provides rich information about the dissociation dynamics of NH3.These results show that this new apparatus is a powerful tool for investigating the molecular reaction dynamics using time-resolved methods.  相似文献   
10.
Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号