首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   343篇
  国内免费   21篇
化学   14篇
晶体学   12篇
力学   125篇
综合类   32篇
数学   83篇
物理学   1165篇
  2023年   26篇
  2022年   22篇
  2021年   16篇
  2020年   12篇
  2019年   34篇
  2018年   25篇
  2017年   31篇
  2016年   37篇
  2015年   49篇
  2014年   105篇
  2013年   63篇
  2012年   68篇
  2011年   83篇
  2010年   82篇
  2009年   90篇
  2008年   106篇
  2007年   75篇
  2006年   71篇
  2005年   86篇
  2004年   72篇
  2003年   76篇
  2002年   30篇
  2001年   24篇
  2000年   30篇
  1999年   10篇
  1998年   21篇
  1997年   11篇
  1996年   8篇
  1995年   14篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
排序方式: 共有1431条查询结果,搜索用时 15 毫秒
1.
针对甲烷在大气中背景气体成分复杂、检测难度大、稳定性差等问题,本文基于可调谐二极管激光吸收光谱技术和波长调制光谱技术,将积分梳状滤波器与有限脉冲响应滤波器相结合应用于数字正交锁相放大器,开展大气中甲烷气体的痕量检测实验研究。实验表明,与传统的数字正交锁相放大器相比较,改进的数字正交锁相放大器提取的二次谐波信号的信噪比从38.61 dB提高到44.95 dB;将非线性迭代最小二乘法-极限学习机算法模型应用于甲烷气体浓度反演,与经典的最小二乘法相比较,其均方根误差减小了0.907;通过16组浓度步进实验测试,该系统的实际检测下限为1 ppm;在压力为600 mbar,温度为25℃,甲烷浓度为50 ppm进行3 h的长期稳定性测试,检测的甲烷浓度变化范围为49.6~50.3 ppm,其标准差为0.0921 ppm。当积分时间达到56 s时,该系统的理论检测极限为25.6 ppb。积分梳状滤波器和非线性迭代最小二乘法-极限学习机算法模型在红外气体检测方面具有较高的优越性和实用前景。  相似文献   
2.
牛嘉琪  郝鹏  王凯  姚晓天 《光学学报》2022,(10):227-234
为研究傅里叶域锁模光电振荡器(FDML OEO)的锁模匹配精度,首先通过分析FDML OEO在滤波器调谐周期与环路延迟时间整倍数存在误差时的起振过程,研究建立FDML OEO开环增益、可调滤波器半波带宽、扫频输出带宽与傅里叶域锁模匹配精度之间的关系;随后选取FDML OEO的输出线性扫频信号延时自外差拍频信号的相位噪声作为振荡器输出信号质量的评价参数。通过实验验证FDML OEO中可调谐滤波器半波带宽、系统开环增益与傅里叶域锁模匹配精度之间的关系;实验分析了傅里叶域匹配精度对FDML OEO输出射频信号带宽的影响。实验结果与理论相一致,结果表明:可调谐滤波器的半波带宽越大,开环增益越大,傅里叶域锁模的匹配精度要求越低;傅里叶域锁模输出频率范围越大,对傅里叶域锁模的匹配精度要求越高;失谐情况越严重,FDML OEO可实现的最大扫频范围将越小。该研究结果为宽带、低相噪FDML OEO的发展提供了重要的技术理论参考。  相似文献   
3.
4.
杨维  周新志 《应用声学》2015,23(11):51-51
预选器作为射频接收前端的主要组成部分,对整个射频信号的接收有着重要的作用。针对实际无线通信环境下的应用,使用ADS软件设计了一种20MHz~3.6GHz的射频前端预选器。在该设计中采用了亚倍频程滤波器组进行分段滤波和抑制镜像信号,并利用低噪声放大器(LNA)对信号进行放大并减小噪声,并对设计的预选器关键部分的插入损耗、增益、噪声系数等指标进行了仿真。仿真结果显示,所设计的预选器各项性能指标均已达到了预期的要求,对接收机前端系统的研究和完善具有重要的参考价值。  相似文献   
5.
基于光栅层控制光波传播耦合波方程,设计了能够实现共振波长可调谐的亚波长光栅导模共振滤波器.通过调谐空气层的厚度,滤波器可以实现波长75nm的调谐,线宽均小于或等于1nm.将共振波长可调谐滤波器与中心波长为1.55μm的垂直腔面发射激光器(VCSEL)集成,形成了激射波长可调谐VCSEL.研究发现激射波长调谐范围与共振波长可调谐滤波器相同,而且在相同空气层厚度下,激射波长可调谐VCSEL的激射波长和共振波长可调谐滤波器的共振波长相同.该VCSEL不仅可以选择激射波长还可对输出横向模式进行选择.  相似文献   
6.
太赫兹滤波器是太赫兹通信、太赫兹成像和太赫兹检测等太赫兹应用系统中不可或缺的功能器件。按照不同的分类方式,滤波器有不同的种类,常见的按照选频功能可分为高通滤波器、低通滤波器、带阻滤波器和带通滤波器。为了实现在太赫兹波段的滤波效果,世界各地的研究人员利用不同的结构、材料和控制方式实现了功能各异的太赫兹滤波器,但是考虑到设计的器件要应用到太赫兹系统中,成本低廉、结构简单、性能优越的太赫兹滤波器一直是研究人员的追求。分形概念自提出以来在很多研究领域都有了快速发展,但是在太赫兹波段的应用还不是很常见,特别是应用于太赫兹功能器件的设计。引入分形中科赫曲线的概念设计并制备了一种新型的太赫兹带通滤波器,该滤波器是在金属薄膜上刻蚀出科赫曲线分形结构,当太赫兹波垂直入射到该滤波器时候实现了在太赫兹波段的窄带滤波。在滤波器的设计过程中,追求理论与实验相结合,首先在电磁仿真软件中建立科赫曲线分形结构滤波器模型进行计算,探究分形结构应用于太赫兹波段进行滤波的可行性,在进行多次计算之后得到优化后的尺寸和结构,然后根据优化后的尺寸加工出科赫曲线分形结构太赫兹滤波器样品,并且将样品放在太赫兹时域光谱系统中进行实验测量,得到实验数据后与仿真结果进行比较。在仿真中利用了时域有限差分法模拟科赫曲线分形结构太赫兹带通滤波器的传输特性,优化后的仿真结果表明:滤波器的谐振频率为0.715 THz,透射系数能够达到0.92,-3 dB带宽为21.9 GHz,将仿真得到的散射参数进行S参数反演得到了太赫兹滤波器样品的电磁参数,这在理论上分析了太赫兹波在谐振点处产生透射增强的原因。利用飞秒激光微加工系统制备了尺寸优化后的科赫曲线分形结构太赫兹带通滤波器样品,然后使用太赫兹时域光谱系统对样品的传输特性进行测试,对实验得到的时域数据进行快速傅里叶变换之后得到频域数据,再把频域数据进行归一化处理后与之前的电磁仿真结果进行对比,发现实验测得的结果与电磁软件仿真得到的结果较为吻合。  相似文献   
7.
为了抑制蛟龙号载人潜水器水声通信受母船色噪声干扰的影响,本文提出了一种统计匹配滤波器在色噪声环境下使用的新方法,它通过将接收信号映射到一个生成子空间中进行信号检测,可提高输出水声通信信号的信噪比。受客观条件限制,向阳红09船——蛟龙号载人潜水器的试验母船噪声环境比较恶劣,对水声通信产生了较强的干扰。如何在向阳红09船的这种强、色噪声环境下,提升水声同步信号的检测能力,对提高水声通信的可靠性是非常有帮助的。实际采集试验数据分析结果验证了该检测算法比传统匹配滤波器有更强的信号检测能力。  相似文献   
8.
王显  张德伟  王树兴  吕大龙  张毅 《强激光与粒子束》2019,31(9):093206-1-093206-8
提出了一种数学建模方法用来分析折叠半模基片集成波导(FHMSIW)结构的场分布。基于多线理论首次计算了FHMSIW结构的衰减常数和相位常数,验证其与传统波导和基片集成波导的等效性。提出了FHMSIW结构具有高通特性和带阻特性,同时该结构的上下层具有近似奇对称的性质。通过在FHMSIW结构的中间金属层蚀刻缝隙或者添加金属过孔,就可以实现器件由带通到带阻的性能转换,给出了FHMSIW结构带阻、带通特性的产生和变换机理。利用其独特的性质,分别设计了等效HMSIW四分之一谐振枝节加载的FHMSIW均衡器和FHMSIW带通滤波器,设计的FHMSIW均衡器无需附加额外的馈电机制。测量结果显示出器件具有良好的性能,与仿真结果具有很好的一致性。相比于其他的平面电路,该设计的结构具有小型化、低损耗以及高Q值等优势。  相似文献   
9.
10.
提出了一种具有可重构带阻特性的超宽带超导滤波器,可有效抑制通带内的干扰信号。该超宽带滤波器基本结构是由改进后的多模谐振器和平行耦合微带馈线构成。2-bit叉指电容(interdigital capacitor,IDC)阵列被加载在平行耦合馈线外端,实现阻带的"开/关"及阻带中心频率的控制。该滤波器是在尺寸为20.0mm×6.0mm的MgO介质基片上实现的。未经调谐的测试结果显示了优异特性,并且和仿真结果吻合得很好。超宽带通带内的阻带可自由"开/关",中心频率调节范围从7.15到7.49GHz。此外,阻带在所有"开"的状态下显示了高的选择性(10dB带宽小于3%)和高的抑制性(高于38dB)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号