首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3613篇
  免费   138篇
  国内免费   643篇
化学   3823篇
晶体学   22篇
力学   21篇
综合类   1篇
数学   8篇
物理学   519篇
  2024年   2篇
  2023年   140篇
  2022年   143篇
  2021年   157篇
  2020年   180篇
  2019年   111篇
  2018年   75篇
  2017年   135篇
  2016年   158篇
  2015年   166篇
  2014年   185篇
  2013年   164篇
  2012年   275篇
  2011年   238篇
  2010年   213篇
  2009年   270篇
  2008年   265篇
  2007年   245篇
  2006年   226篇
  2005年   199篇
  2004年   183篇
  2003年   123篇
  2002年   81篇
  2001年   98篇
  2000年   46篇
  1999年   42篇
  1998年   44篇
  1997年   36篇
  1996年   23篇
  1995年   29篇
  1994年   13篇
  1993年   21篇
  1992年   15篇
  1991年   17篇
  1990年   12篇
  1989年   10篇
  1988年   17篇
  1987年   13篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   1篇
  1982年   6篇
  1979年   1篇
排序方式: 共有4394条查询结果,搜索用时 31 毫秒
1.
Herein, we investigated the analytical features of potentiometric immunosensors for detection of alpha-fetoprotein (AFP) in hepatocellular carcinoma at different electrodes, such as carbon fiber microelectrode (CFME) and carbon-disk electrode (CDE), respectively. To construct such an immunosensor, anti-AFP capture antibodies were first conjugated covalently onto the activated electrodes through typical carbodiimide coupling. Thereafter, one-step immunoreaction protocol was successfully introduced to develop a new potentiometric immunoassay upon addition of AFP. Accompanying the antigen-antibody reaction, the surface charges of the modified electrodes were changed for the readout of electric potential. Results indicated that the linear range of CDE-based immunosensor was 0.1–100 ng mL−1 AFP, whereas the assay sensitivity by using CFME could be further increased to 3.2 pg mL−1 with the linear range from 0.01 to 500 ng mL−1 AFP. Meanwhile, CFME-based immunosensor showed high sensitivity, good reproducibility and specificity, and could be utilized for the analysis of human serum specimens with consistent results relative to commercialized ELISA kit.  相似文献   
2.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   
3.
Azaperone, with anti-anxiety and anti-aggressive activities used in veterinary medicine, is a member of the butyrophenone class. It is ordinarily utilized for a wide range of indications, such as sedation, obstetrics, and anesthesia. In this research, an improved synthetic route is presented for azaperone using a phase-transfer catalyst(PTC). In general, it was synthesized as a dopamine antagonist in four steps. The bis(2-chloroethyl) amine intermediate is easily obtained after the conversion of the alcohol groups into the chloride leaving group using thionyl chloride(95% yields). The alkylation of commercially available 2-amino pyridine in the presence of PTC was then carried out, giving 1-(pyridin-2-yl) piperazine with 75% yield. 1-(Pyridin-2-yl) piperazine was finally alkylated using 4-chloro-1-(4-fluorophenyl) butan-1-one to achieve azaperone with 60% yield. The butyrophenone intermediate was obtained via the Friedel-Crafts reaction of fluorobenzene with 4-chlorobutyryl chloride in the presence of AlCl3. High efficiency, gentle reaction conditions, and fast and simple procedure are the advantages of this method. Also, the electrochemical oxidation behaviour of azaperone was investigated using cyclic and differential pulse voltammetry techniques. Cyclic voltammetric studies indicated an irreversible process for azaperone electro-oxidation with a peak potential of 0.78 V in a phosphate buffer solution(pH=7.0) vs. Ag/AgCl(saturated KCl) electrode. The value of the peak current vs. the azaperone concentration was enhanced linearly in the range of 10―70 μmol/L, and the detection limit was found to be 3.33 μmol/L.  相似文献   
4.
The massive discharge of biomass wastes not only causes waste of resources, but also pollutes the environment. Therefore, converting biomass wastes into carbon materials is an effective way to solve the above problems. Here, using biomass waste pig nails as raw materials and K2CO3 as chemical activators, the N-doped porous carbon(KPNC) is prepared by direct pyrolysis. As an electrode for supercapacitors, the electrochemical tests of KPNCs showed that they exhibited good electrochemical performance and excellent cycling stability. When the current density is 0.2 A/g, the specific capacitance is up to 344.6 F/g. Moreover, it still maintains 97.6% initial capacitance retention after 2000 cycles at a high current density of 5 A/g. Above exceptional electrochemical performances may be ascribed to an appropriate porous structure(Smicro/Stotal=80.31%, Vmicro/Vtotal=76.19%), high nitrogen contents(4.44%, atomic fraction), oxygen contents(9.13%, atomic fraction) as well as small internal resistance. The above experimental results show that the conversion of pig nails to porous carbon can reduce the waste of resources and alleviate environmental pollution.  相似文献   
5.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
6.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   
7.
Dacarbazine (DTIC) is a chemotherapy drug that is used for the treatment of Hodgkin's lymphoma, malignant melanoma, childhood solid tumors and soft tissue sarcoma. The surface confined interaction between DTIC and nucleic acids was investigated for the first time in this study by using both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in combination with disposable pencil graphite electrodes. The oxidation signals of DTIC and guanine were measured before and after interaction process using DPV technique. The interaction of DTIC with nucleic acids; poly[A], poly[G], or double stranded of poly[A]‐poly[T] and poly[G]‐poly[C] was also examined using DPV. Furthermore, EIS technique was utilized for detection of the interaction between DTIC and nucleic acids; ssDNA/dsDNA, poly[A], poly[G], or double stranded poly[A]‐poly[T] and poly[G]‐poly[C].  相似文献   
8.
A dinaphtho[2,3-b:2′,3′-i]dihydrophenazine (DNP) derivative was synthesized by Buchwald-Hartwig cross-coupling, and its electronic spectrum was compared with that of dinaphtho[b,i]dihydrophenazine-5,18-dione (DNP-dione) as an anthraquinone analog. An absorption band of DNP is attributed to extension of π-conjugation over the entire molecule via the N atom. DNP-dione showed a broad absorption band in the range 450–490?nm due to intramolecular charge-transfer interactions. Additionally, the absolute fluorescence quantum yield of DNP was larger than that of DNP-dione. DNP-dione exhibited reversible oxidation peaks and a similar oxidation potential to DNP, since there are very weak electronic interactions between the anthracene and anthraquinone units across the N atoms with the 4-octyloxyphenyl substituent.  相似文献   
9.
An ultrasensitive electrochemical biosensor was fabricated for electroanalytical determination of ascorbic acid(AA), dopamine(DA) and uric acid(UA) individually and simultaneously based on polypyrrole hollow nanotubes loaded with Au and Fe3O4 nanoparticles(NPs) uniformly(PPy@Au-Fe3O4). The PPy@Au-Fe3O4 nanotubes were synthesized in one-pot using MoO3 nanorods as templates and the polymerization of Py, the formation of Au and Fe3O4 NPs and the removel of MoO3 templates took place stimultaneously. Electrochemical studies reveal that PPy@Au-Fe3O4modified glassy carbon electrode(GCE) possesses excellent electro-catalytic activities toward the oxidation of AA, DA and UA. Their oxidation peak currents increase linearly in the concentration ranges of 1-2000 μmol/L for AA, 0.01-25 and 25-300 μmol/L for DA and 0.1-300 μmol/L for UA. Their detection limit values(S/N=3) were calculated as 0.45, 0.0049, and 0.051 μmol/L for AA, DA and UA in the individual detection. By changing the concentrations simultaneously, the calibration curves showed linearity to 1000, 200, and 200 μmol/L with detection limit of 0.39, 0.0060, and 0.060 μmol/L for AA, DA, and UA, respectively. Finally, the obtained biosensor was successfully applied to the detection of AA, DA, and UA with satisfactory results on actual samples.  相似文献   
10.
A facile, single-step hydrothermal route is followed to prepare ZnS nanowires with large aspect ratios. The obtained ZnS nanowires deposited on nickel foam (ZnS/Ni-foam) exhibit a specific capacitance of 781 F/g at a current density of 0.5 A/g. An asymmetric supercapacitor fabricated from ZnS/Ni-foam as a positive electrode and jute derived activated carbon coated on Ni-foam (JAC/Ni-foam) as a negative electrode attains a high specific capacitance of 573 F/g at a current density of 0.5 A/g, with an accompanying high energy density of 51 Wh/kg at a power density of 200 W/kg in an extensive operating potential window of 1.2 V. In addition, the ZnS//JAC asymmetric supercapacitor reveals long-term cyclic stability, after 10,000 GCD cycles the device sustain around ~87 % of the initial specific capacitance. These results shed enlighten a new opportunity for promising electrode materials in supercapacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号