首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  完全免费   23篇
  物理学   103篇
  2019年   1篇
  2018年   1篇
  2017年   7篇
  2016年   4篇
  2015年   11篇
  2014年   7篇
  2013年   10篇
  2012年   3篇
  2011年   13篇
  2010年   5篇
  2009年   13篇
  2008年   10篇
  2007年   8篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
1.
A hypothetical magnetic drug targeting system, utilizing high gradient magnetic separation (HGMS) principles, was studied theoretically using FEMLAB simulations. This new approach uses a ferromagnetic wire placed at a bifurcation point inside a blood vessel and an externally applied magnetic field, to magnetically guide magnetic drug carrier particles (MDCP) through the circulatory system and then to magnetically retain them at a target site. Wire collection (CE) and diversion (DE) efficiencies were defined and used to evaluate the system performance. CE and DE both increase as the strength of the applied magnetic field (0.3–2.0 T), the amount of ferromagnetic material (iron) in the MDCP (20–100%) and the size of the MDCP (1–10 μm radius) increase, and as the average inlet velocity (0.1–0.8 m s−1), the size of the wire (50–250 μm radius) and the ratio (4–10) of the parent vessel radius (0.25–1.25 mm radius) to wire radius decrease. The effect of the applied magnetic field direction (0° and 90°) on CE and DE was minimal. Under these plausible conditions, CEs as high as 70% were obtained, with DEs reaching only 30%; however, when the MDCPs were allowed to agglomerate (4–10 μm radius), CEs and DEs of 100% were indeed achieved. These results reveal that this new magnetic drug targeting approach for magnetically collecting MDCPs at a target site, even in arteries with very high velocities, is feasible and very promising; this new approach for magnetically guiding MDCPs through the circulatory system is also feasible but more limited. Overall, this study shows that magnetic drug targeting, based on HGMS principles, has considerable promise as an effective drug targeting tool with many potential applications.  相似文献
2.
Cells of the eukaryotic unicellular microorganism Dictyostelium discoideum are constitutively resistant to vital staining of their nuclei by the DNA-specific dye Hoechst 33342. By studying the mechanisms of this resistance, we evidenced that these cells expel vesicles containing the dye for detoxification (Tatischeff et al., Cell Mol Life Sci, 54: 476-87, 1998). The question to be addressed in the present work is the potential use of these extracellular vesicles as a biological drug delivery tool, using Hoechst 33342 as a model of a DNA-targeting drug. After cell growth with or without the dye, vesicles were prepared from the cell-free growth medium by differential centrifugation, giving rise to two types of vesicles. Negative staining electron microscopy showed their large heterogeneity in size. Using fluorescence techniques, data were obtained on the dye loading and its environment inside the vesicles. By UV video-microscopy, it was demonstrated that the dye-containing vesicles were able to deliver it into the nuclei of naive Dictyostelium cells, thus overcoming their constitutive resistance to the free dye. A vesicle-mediated dye-transfer into the nuclei of living human leukaemia multidrug resistant K562r cells was also observed.  相似文献
3.
When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35–125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain–chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.  相似文献
4.
A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA–PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA–PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(l-lactide)–poly(ethylene–glycol) (PLLA–PEG) and poly(D-lactide)–poly(ethylene–glycol) (PDLA–PEG) were synthesized by the ring-opening polymerization of l-lactide and d-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA–PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8–4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer. Compared with the single PLLA–PEG or PDLA–PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application. The rifampin loading capacity and encapsulation efficiency by the stereocomplex micelles were higher than those by the single polymer micelles, respectively. The drug release time in vitro was depending on the composites of the block copolymers and also could be controlled by the polymer molecular weight and the morphology of the polymer micelles.  相似文献
5.
A status report on rapidly advancing femtosecond laser technology, three-dimensional (3D) microstructuring by multiphoton illumination technique, is given. Taking its origin from multiphoton microscopy, this technique is now becoming an important microfabrication tool. In our work we apply near-infrared Ti:sapphire femtosecond laser pulses (at 800/780 nm) for 3D material processing. When tightly focused into the volume of a photosensitive material (or photoresist), they initiate 2PP process by, for example, transferring liquid into the solid state. This allows the fabrication of any computer generated 3D structure by direct laser “recording” into the volume of photosensitive material. 2PP of photosensitive materials irradiated by femtosecond laser pulses is now considered as enabling technology for the fabrication of 3D photonic crystals and photonic crystal templates. In particular, 2PP allows one to introduce defects at any desired locations, which is crucial for the practical applications. Recently, we studied possible applications of 2PP technique in biomedicine. 2PP is a very interesting technique for the fabrication of drug delivery systems, scaffolds for tissue engineering, and medical implants. These and other biomedical applications of 2PP will be reviewed.  相似文献
6.
We have demonstrated the successful thin film growth of two pullulan derivatives (cinnamate-pullulan and tosylate-pullulan) using matrix assisted pulsed laser evaporation (MAPLE). Our MAPLE system consisted of a KrF* laser, a vacuum chamber, and a rotating target holder cooled with liquid nitrogen. Fused silica and silicon (1 1 1) wafers were used as substrates. The MAPLE-deposited thin films were characterized by transmission spectrometry, profilometry, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The deposited layers ranged from 250 nm to 16.5 μm in thickness, depending on the laser fluence (0.065-0.5 J cm−2) and number of pulses applied for the deposition of one structure (1500-13,300). Our results confirmed that MAPLE was well-suited for the transfer of cinnamate-pullulan and tosylate-pullulan.  相似文献
7.
We have demonstrated successful thin film growth of poly(1,3-bis-(p-carboxyphenoxy, propane)-co-(sebacic anhydride)) (20:80) by matrix-assisted pulsed laser evaporation using a KrF* excimer laser (λ = 248 nm, τ = 25 ns, ν = 10 Hz). The deposited thin films have been investigated by Fourier transform infrared spectroscopy, and atomic force microscopy. We have demonstrated that the main functional groups of poly(1,3-bis-(p-carboxyphenoxy, propane)-co-(sebacic anhydride)) (20:80) are present in the deposited film. The effect of matrix on both thin film structure and surface morphology was also examined. The goal of this work is to explore laser processing of this material to create suitable constructs for drug delivery applications.  相似文献
8.
热作用可以提高肿瘤血管对脂质体药物的通透性,从而促进肿瘤内部的药物传输.本文建立了一个新的模型对热促进脂质体药物在肿瘤内输送的治疗方式进行了数值研究.模型将肿瘤划分为血管丰富的周边区域和无血管的中心区域.数值计算结果显示热作用能有效促进肿瘤内脂质体药物的传输.  相似文献
9.
We report the first successful deposition of triacetate-pullulan polysaccharide thin films by matrix assisted pulsed laser evaporation. We used a KrF* excimer laser source (λ = 248 nm, τ ≈ 20 ns) operated at a repetition rate of 10 Hz. We demonstrated by FTIR that our thin films are composed of triacetate-pullulan maintaining its chemical structure and functionality. The dependence on incident laser fluence of the induced surface morphology is analysed.  相似文献
10.
We report the results of the surface and in-depth characterization of two component blend films of poly(l-lactic acid) (PLLA) and Pluronic surfactant [poly(ethylene oxide) (A) poly(propylene oxide) (B) ABA block copolymer]. These blend systems are of particular importance for protein drug delivery, where it is expected that the Pluronic surfactant will retain the activity of the protein drug and enhance the biocompatibility of the device. Angle dependant X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) employing an SF5+ polyatomic primary ion source were both used for monitoring the surfactant's concentration as a function of depth. The results show an increased concentration of surfactant at the surface, where the surface segregation initially increases with increasing bulk concentration and then remains constant above 5% (w/w) Pluronic. This surface segregated region is immediately followed by a depletion region with a homogeneous mixture in the bulk of the film. These results suggest the selection of the surfactant bulk concentration of the thin film matrices for drugs/proteins delivery should achieve a relatively homogeneous distribution of stabilizer/protein in the PLLA matrix. Analysis of three component blends of PLLA, Pluronic and insulin are also investigated. In the three component blends, ToF-SIMS imaging shows the spatial distribution of surfactant/protein mixtures. These data are reported also as depth profiles.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号