首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  完全免费   6篇
  物理学   24篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有24条查询结果,搜索用时 203 毫秒
1.
Gel polymer electrolyte (GPE) films comprising of poly(vinylidenefluoride), propylene carbonate, ethylene carbonate and zinc trifluoromethane sulfonate are prepared and characterized. The composition of GPE is optimized to contain minimum liquid components with a maximum specific conductivity of 3.94×10−3 S cm−1 at (25±1) °C. A detailed investigation on the properties such as ionic conductivity, transport number, electrochemical stability window, reversibility of Zn/Zn2+ couple and Zn/gel electrolyte interfacial stability have been carried out. The ionic conductivity follows a VTF behaviour with an activation energy of about 0.0014 eV. Cationic transport number varies from 0.51 at 25 °C to 0.18 at 70 °C. Several cells have been assembled with GPE as the electrolyte, zinc as the anode, γ-MnO2 as the cathode and their charge–discharge behaviour followed. Capacity values of 105, 82, 64 and 37 mAh/g of MnO2 have been achieved at 10, 50, 100 and 200 μA/cm2 discharge current densities, respectively. The discharge capacity values are almost constant for about 55 cycles for all values of current densities. Cyclic voltammetric study of MnO2 electrode in Zn/GPE/MnO2 cell clearly shows intercalation/deintercalation of Zn2+.  相似文献
2.
A series of LiCrxMn2−xO4 spinels were synthesised by the Pechini method which enables dopant Cr ions to distribute at Mn sites homogeneously. Neutron diffraction and EDS analysis confirmed that Cr ions do occupy 16d sites (octahedral intestial) evenly in the spinel structure. The Cr dopant effect improves the cyclability of spinel LiMn2O4 electrodes and decreases the self-discharge rate substantially. Cyclic voltammetry and AC impedance spectroscopy were employed to characterise the reactions of lithium insertion into and extraction from LiCrxMn2−xO4 electrodes. It was found that a thicker surface layer was formed on the surface of the pure LiMn2O4 electrode than on the LiMn2O4 electrode.  相似文献
3.
New phase formation at the La0.9Sr0.1MnO3/YSZ interface and its effects on the cathodic performances were studied at 900 °C in air. The resistance caused by the interfacial product layer kept increasing with time to reach up to 40% of the total resistance after 500 h. The interfacial product was identified as La2Zr2O7 by XRD measurement. The electrical conductivity of La2Zr2O7 (2.4 × 10−5 S cm−1 at 1000 °C), measured by AC impedance and current interruption methods, was 4 to 7 orders of magnitude smaller than those of La0.9Sr0.1MnO3 electrode or YSZ electrolyte. Either the electronic conductivity or the electrochemical O2 reduction activity of La2Zr2O7 was negligible. Combining these results, a conclusion was made that the cathodic degradation comes mainly from the growth of interfacial product layer and its contribution to the cell resistance increment is ohmic in nature.  相似文献
4.
The stoichiometry range and lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00) with garnet-like structure were studied. The powder X-ray diffraction data of Li5+x Ba x La3−x Ta2O12 indicated that single phase oxides with garnet-like structure exist over the compositional range 0 ≤ x ≤ 1.25; while for x = 1.5, 1.75 and 2.00, the presence of second phase in addition to the major garnet like phase was observed. The cubic lattice parameter increases with increasing x and reaches a maximum at x = 1.25 then decreases slightly with further increase in x in Li5+x Ba x La3−x Ta2O12. The impedance plots of Li5+x Ba x La3−x Ta2O12 samples obtained at 33 °C indicated a minimum grain-boundary resistance (R gb) contribution to the total resistance (R b + R gb) at x = 1.0. The total (bulk + grain boundary) ionic conductivity increases with increasing lithium and barium content and reaches a maximum at x = 1.25 and then decreases with further increase in x in Li5+x Ba x La3−x Ta2O12. Scanning electron microscope investigations revealed that Li6.25Ba1.25La1.75Ta2O12 is much more dense, and the grains are more regular in shape. Among the investigated compounds, Li6.25Ba1.25La1.75Ta2O12 exhibits the highest total (bulk + grain boundary) and bulk ionic conductivity of 5.0 × 10−5 and 7.4 × 10−5 S/cm at 33 °C, respectively.  相似文献
5.
The past few years have seen a dramatic increase in the study of organic thin-film systems that are based on silicon-carbon covalent bonds for bio-passivation or bio-sensing applications. This approach to functionalizing Si wafers is in contrast to gold-thiol or siloxane chemistries and has been shown to lead to densely packed alkyl monolayers. In this study, a series of alkyl monolayers [CH3(CH2)nCH=CH2; n = 7, 9, 11, 13, 15] were directly covalent-linked to Si(1 1 1) wafers. The structures of these monolayers were studied using X-ray reflectometry (XRR) and AC impedance spectroscopy. Both techniques are sensitive to the variation in thickness with each addition of a CH2 unit and thus provide a useful means for monitoring molecular-scale events. The combination of these techniques is able to probe not only the thickness, but also the interfacial roughness and capacitance of the layer at the immobilized surface with atomic resolution. Fundamental physical properties of these films such as chain canting angles were also determined.  相似文献
6.
Electrochemical synthesis of polypyrrole (PPy) film was achieved on mild steel (MS), in monomer containing 0.1 M phenylphosphonic acid solution. The synthesis was carried out using cyclic voltammetry technique. It was found that the electrode surface could only become completely passive, after a few successive cycles in solution of 0.1 M pyrrole + 0.1 M phenylphosphonic acid. Then, the thickness of polymer film was increased with help of successive cycles in a relatively narrower potential range. The corrosion performance of polymer coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy (EIS) and anodic polarization curves. It was shown that the coating had high stability and low permeability, under such aggressive conditions. The EIS results also showed that the coating exhibited important anodic protection behaviour on mild steel. The percent protection efficiency value (E%) was found to be 98.4% and the percent total porosity value (P%) was determined to be 0.752%, after 96 h exposure time to corrosive solution.  相似文献
7.
In the present investigation, holographic interferometry was utilized for the first time to measure in situ the thickness of the oxide film, alternating current (AC) impedance, and double layer capacitance of aluminium samples during anodization processes in aqueous solution without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out by the electrochemical impedance spectroscopy (EIS), in different concentrations of sulphuric acid (1.0–2.5% H2SO4) at room temperature. In the mean time, the real-time holographic interferometric was used to measure the thickness of anodized (oxide) film of the aluminium samples in aqueous solutions. Also, mathematical models were applied to measure the AC impedance, and double layer capacitance of aluminium samples by holographic interferometry, during anodization processes in aqueous solution. Consequently, holographic interferometric is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film, the AC impedance, and the double layer capacitance of the aluminium samples can be determined in situ. In addition, a comparison was made between the electrochemical values obtained from the holographic interferometry measurements and from measurements of EIS. The comparison indicates that there is good agreement between the data from both techniques.  相似文献
8.
Investigation of the electrical properties of polymer–clay nanocomposites is important in the development of nanoelectronic devices. These nanocomposites may be prepared by intercalating suitable monomers within interlayer spaces of expanding layered clay materials, followed by in situ polymerization. We made use of this approach to prepare montmorillonite–polyaniline nanocomposites by ion-exchanging the intergallery cations for anilinium ions and subsequently polymerizing the anilinium ions by peroxydisulphate in the acidic medium to yield emeraldine salt form of polyaniline intercalated in montmorillonite (ES1-MMT). The emeraldine salt form of polyaniline contains one positive charge per three monomer units, and hence, polymerization of anilinium ions reduces the number of cations present within the interlayer. Charge compensation thus requires uptake of required amount of cations from the solution. Further, the emeraldine salt form of polyaniline can be neutralized by treating with excess base such as ammonia. Thus, the neutralization of emeraldine salt results in an uptake of ammonium ions for charge balance. We have, therefore, neutralized ES1-MMT using aqueous ammonium hydroxide, and the cations inserted into the interlayer were again exchanged for anilinium ions. The latter was polymerized in acidic medium to yield more polyaniline in its emeraldine salt form (ES2-MMT). By repeating this procedure we have also prepared ES3-MMT. X-ray diffraction (XRD) spectra recorded at 150 °C reveal the enhancement of d-spacing upon increased amounts of polymer formation, and the Fourier transform infrared (FTIR) analysis also supports this by showing enhanced absorption due to bands typical of emeraldine salt (for example, B–NH+ = Q, where B and Q stand for benzanoid and quinoid, respectively). Careful analyses of FTIR spectra reveal that the polymer is present within the interlayers, as well as adsorbed onto the external surfaces and is bound to clay layers through hydrogen bonding. In this publication, we report the electrical properties of such ES-MMT nanocomposites. Alternating current (AC) impedance analysis shows that the nanocomposites are highly conducting materials, and their bulk conductivity enhances in the order ES1-MMT < ES2-MMT < ES3-MMT. The materials are pure electronic conductors as revealed by the direct current polarization studies. Further, their conductivities decrease with increasing temperature as of pure electronic conductors. By treating kaolinite with anilinium ions in acidic medium followed by peroxydisulphate ions, emeraldine salt–kaolinite (ES-KAL) composites have also been prepared. Because kaolinite is a non-expanding clay, the ion exchange is not possible, and hence, the polymer cannot be incorporated into the interlayer. This is indeed shown in the XRD analysis. The polymer can only reside out of the kaolinite particles. FTIR spectra reveal the hydrogen bonding between the polymer and kaolinite outer surfaces. AC impedance spectra of ES-KAL do not show high bulk conductivity. Thus, the comparison of AC impedance spectra of ES-KAL with ES-MMT systems clearly indicates that the bulk conductivity of the latter systems is predominantly due to intercalated polyaniline.  相似文献
9.
Electron energy loss spectra (EELS) of fluorene, fluorenone, and diiodofluorenone vapors excited by monokinetic electrons of energies 15–50 eV have been obtained. The singlet and triplet absorption bands of these molecules have been calculated. Comparison of these bands with the experimental EELSs and optical absorption spectra has shown that the forbiddenness of singlet-triplet transitions is not completely removed in the process of interaction of molecules with electrons. The presence of heavy iodine atoms in the diiodofluorenone molecule enhances singlet-triplet transitions. Bands of overtones of stretching vibrations of the CH groups of the benzene rings have been detected near the peak of elastic scattering of electrons of the molecules studied.  相似文献
10.
A new ion translational energy spectrometer has been developed to carry out low-energy, gas-phase ion-molecule collision experiments which aim to probe molecular potential energy surfaces. The collisional technique employed relates small changes in the kinetic energy of a projectile ion after it has undergone collision with a static neutral atom/molecule to changes in the overall potential energy of the collision system; information can be furnished about the interaction potential between the projectile and the target. First measurements are reported of a high resolution target excitation spectrum obtained in 1.8 keV collisions of H2 + ions with N2. New results pertaining to collision-induced dissociation of CO2 + ions are presented and discussed in terms of potential functions of low-lying electronic states of the molecular ion.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号