首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   24篇
  国内免费   123篇
化学   892篇
晶体学   2篇
力学   9篇
数学   8篇
物理学   189篇
  2023年   39篇
  2022年   24篇
  2021年   27篇
  2020年   41篇
  2019年   15篇
  2018年   12篇
  2017年   37篇
  2016年   35篇
  2015年   31篇
  2014年   29篇
  2013年   75篇
  2012年   49篇
  2011年   83篇
  2010年   61篇
  2009年   67篇
  2008年   86篇
  2007年   103篇
  2006年   79篇
  2005年   37篇
  2004年   38篇
  2003年   29篇
  2002年   21篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有1100条查询结果,搜索用时 15 毫秒
1.
A novel ZnCo2O4/Bi2O3 heterojunction photocatalyst was prepared via balling method. The enhanced photocatalytic activity is mainly attributed to the broad photoabsorption and low recombination rate of photogenerated electron-hole pairs, which is driven by the photogenerated potential difference formed at the ZnCo2O4/Bi2O3 heterojunction interface.  相似文献   
2.
间二甲苯分子在不同外电场下结构和解离特性研究   总被引:1,自引:0,他引:1  
间二甲苯是挥发性有机物(VOCs, Volatile Organic Compounds)的关键活性成分,研究其在外电场下的性质十分重要.采用密度泛函理论(DFT),在B3LYP/6-311G++基组水平上对间二甲苯分子进行优化,从分子结构研究了不同外电场(-0.025 a.u.~0.025 a.u.)作用下,间二甲苯分子的总能量,键长,电偶极矩,前线轨道,红外光谱和解离势能面.计算结果表明,沿两甲基中C原子连线方向的电场(-0.025 a.u.~0.025 a.u.)增加时,分子总能量和能隙先增大后减小,电偶极矩先减小后增加.通过计算发现外电场对间二甲苯分子不同键长和不同振动模式的红外光谱的影响均有所不同.间二甲苯分子的解离特性表现为:沿两甲基中C原子连线方向施加强度超过0.047 a. u.的电场时,位于电场增加方向的甲基与苯环之间起连接作用的C-C键断裂.以上计算结果可为利用电场降解间二甲苯提供重要理论参考.  相似文献   
3.
Degradation of pyrene in soil in a net-to-net pulsed discharge plasma (PDP) system was reviewed. Effect of main chemical parameters, including air flow rate, pyrene concentration, initial pH and soil moisture content on pyrene degradation was examined. The obtained results show that 87.9% of pyrene could be removed under the condition of 60 min reaction; increasing of air flow rate within 1 L min−1 was favorable for degradation; pyrene removal was decreased with the increase of initial pyrene concentration; oxidation of pyrene was more evident in acidic soil; enhancement of soil moisture content has no benefit on pyrene degradation.  相似文献   
4.
Self-reinforced composites are polymeric materials formed by a reinforcement core and a low-melting point skin, which acts as a matrix after the consolidation step. These materials are widely exploited in industrial applications for their mechanical resistance and durability, which are themselves influenced by processing conditions and polymer composition. In the present work, two similar polypropylene-based commercial fabrics were used to evaluate the surface modifications after laminate compaction and after artificial aging using atomic force microscopy. The results were correlated with the chemical and physical-chemical interactions obtained from scanning electron microscopy, transmission electron microscopy, raman and thermal analysis experiments. Single tape consolidated laminate before and after aging displayed different superficial features that can explain the differences in the macroscopic behavior of the two products.  相似文献   
5.
《中国化学快报》2020,31(10):2673-2677
Electrochemical degradation of sulfamethoxazole (SMX) and its metabolite acetyl-sulfamethoxazole (Ac-SMX) by Ti/SnO2-Sb/Er-PbO2 were investigated. Results indicated that the electrochemical degradation of SMX and Ac-SMX followed pseudo-first-order kinetics. The rate constants of SMX and Ac-SMX were 0.268 and 0.072 min-1 at optimal current density of 10 and 14 mA/cm2, respectively. Transformation products of SMX and Ac-SMX were identified and the possible degradation pathways, including the cleavage of S-N bond, opening ring of isoxazole and nitration of amino group, were proposed. Total organic carbon removal of SMX was nearly 63.2% after 3 h electrochemical degradation. 22.4% nitrogen of SMX was transformed to NO3-, and 98.8% sulfur of SMX was released as SO42-. According to quantitative structure-activity relationship model, toxicities of SMX and Ac-SMX to aquatic organisms significantly decreased after electrochemical degradation. Electric energy consumption for 90% SMX and Ac-SMX degradation was determined to be 0.58-8.97 and 6.88-44.19 Wh/L at different experimental conditions, respectively. Compared with parent compound SMX, the metabolite Ac-SMX is more refractory and toxic, which emphasizes the importance of taking its metabolites into account when investigating the disposal of pharmaceuticals from wastewater.  相似文献   
6.
For the degradation of chitosan, a novel physical method of self-resonating cavitation with strong cavitation effects was investigated in this paper. The effects of initial concentration, pH, temperature, inlet pressure and cavitation time on the degradation efficiency of chitosan were evaluated. It was found that the degradation efficiency was positively correlated with temperature and cavitation time, but was negatively correlated with the solution concentration. The degradation efficiency was maximized at pH of 4.4 and inlet pressure of 0.4 MPa. Under the experimental conditions, the intrinsic viscosity of chitosan solution was reduced by 92.2%, which was twice as high as the degradation efficiency where a Venturi tube cavitator was used. The viscosity-average molecular weights of initial and degraded chitosan were 651 and 104 kD, respectively. The deacetylation degree of chitosan slightly decreased from 89.34% to 88.05%. Structures and polydispersity of initial and degraded chitosan were measured by Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction (XRD) and gel permeation chromatography (GPC). The results showed that the degradation process did not change the natural structure of chitosan. XRD peaks of the original chitosan were observed at 2θ of 9.59° and 20.00°, and the one at 2θ of 20.00° was obviously weakened after the degradation process, which indicated that the crystallinity of chitosan decreased significantly after the degradation. The polydispersity index of chitosan samples decreased from 3.17 to 2.75, indicating that the molecular-weight distribution of products after the degradation was more concentrated. The results proved that self-resonating cavitation prompted the degradation of chitosan and could reduce the polydispersity of the products for the production of oligochitosan with homogeneous molecular weights.  相似文献   
7.
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.  相似文献   
8.
Prasugrel was subjected to forced degradation studies under conditions of hydrolysis (acid, base, and neutral), photolysis, oxidation, and thermal stress. The drug showed liability in hydrolytic as well as oxidative conditions, resulting in a total of four degradation products. In order to characterize the latter, initially mass fragmentation pathway of the drug was established with the help of mass spectrometry/time‐of‐flight, multiple stage mass spectrometry and hydrogen/deuterium exchange data. The degradation products were then separated on a C18 column using a stability‐indicating volatile buffer method, which was later extended to liquid chromatography‐mass spectrometry studies. The latter highlighted that three degradation products had the same molecular mass, while one was different. To characterize all, their mass fragmentation pathways were established in the same manner as the drug. Subsequently, liquid chromatography‐nuclear magnetic resonance (NMR) spectroscopy data were collected. Proton and correlation liquid chromatography with NMR spectroscopy studies highlighted existence of diastereomeric behavior in one pair of degradation products. Lastly, toxicity prediction by computer‐assisted technology (TOPKAT) and deductive estimation of risk from existing knowledge (DEREK) software were employed to assess in silico toxicity of the characterized degradation products.  相似文献   
9.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   
10.
N6-methyladenosine (m6A) on RNAs plays an important role in regulating various biological processes and CRIPSR technology has been employed for programmable m6A editing. However, the bulky size of CRISPR protein and constitutively expressed CRISPR/RNA editing enzymes can interfere with the native function of target RNAs and cells. Herein, we reported a conditional m6A editing platform (FKBP*-dCas13b-ALK) based on a ligand stabilized dCas13 editor. The inducible expression of this m6A editing system was achieved by adding or removing the Shield-1 molecule. We further demonstrated that the targeted recruitment of dCas13b-m6A eraser fusion protein and site-specific m6A erasing were achieved under the control of Shield-1. Moreover, the release and degradation of dCas13b fusion protein occurred faster than the restoration of m6A on the target RNAs after Shield-1 removal, which provides an ideal opportunity to study the m6A function with minimal steric interference from bulky dCas13b fusion protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号