首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1986篇
  免费   406篇
  国内免费   477篇
化学   1956篇
晶体学   24篇
力学   8篇
综合类   11篇
数学   29篇
物理学   841篇
  2024年   3篇
  2023年   14篇
  2022年   50篇
  2021年   83篇
  2020年   79篇
  2019年   78篇
  2018年   59篇
  2017年   66篇
  2016年   59篇
  2015年   130篇
  2014年   123篇
  2013年   176篇
  2012年   155篇
  2011年   175篇
  2010年   158篇
  2009年   175篇
  2008年   147篇
  2007年   189篇
  2006年   127篇
  2005年   140篇
  2004年   139篇
  2003年   121篇
  2002年   82篇
  2001年   43篇
  2000年   46篇
  1999年   37篇
  1998年   34篇
  1997年   16篇
  1996年   31篇
  1995年   17篇
  1994年   19篇
  1993年   14篇
  1992年   16篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有2869条查询结果,搜索用时 15 毫秒
1.
近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。  相似文献   
2.
Circularly polarized luminescence (CPL) has attracted attention as a next-generation light signal because of its carrying more information compared with normal and linearly polarized lights as well as its potential wide application in information fields. Recently, much attention has been paid to small organic molecules-based CPL emitters because of easy synthesis, fine structural modification at molecular level, and tunable wide range emission wavelength. This review highlights the development of small organic molecules-based CPL emitters in the past 5 years (2017–2021). The progress suggests that small organic molecules-based CPL emitters provide a simple and efficient way to generate CPL.  相似文献   
3.
Enhancement of axial magnetic anisotropy is the central objective to push forward the performance of Single-Molecule Magnet (SMM) complexes. In the case of mononuclear lanthanide complexes, the chemical environment around the paramagnetic ion must be tuned to place strongly interacting ligands along either the axial positions or the equatorial plane, depending on the oblate or prolate preference of the selected lanthanide. One classical strategy to achieve a precise chemical environment for a metal centre is using highly structured, chelating ligands. A natural approach for axial-equatorial control is the employment of macrocycles acting in a belt conformation, providing the equatorial coordination environment, and leaving room for axial ligands. In this review, we present a survey of SMMs based on the macrocycle belt motif. Literature systems are divided in three families (crown ether, Schiff-base and metallacrown) and their general properties in terms of structural stability and SMM performance are briefly discussed.  相似文献   
4.
One important prerequisite for the fabrication of molecular functional device strongly relies on the understanding the conducting behaviors of the metal-molecule-metal junction that can respond to an external stimulus. The model Lewis basic molecule 4,4′-(pyridine-3,5-diyl)dibenzonitrile (DBP), which can react with Lewis acid and protic acid, was synthesized. Then, the molecular conducting behavior of DBP, DBP-B(C6F5)3, and DBP-TfOH (DBP-B(C6F5)3, and DBP-TfOH were produced by Lewis acid and protonic acid treatment of DBP) was researched and compared. Given that their identical physical paths for DBP, DBP-B(C6F5)3, and DBP-TfOH to sustain charge transport, our results indicate that modifying the molecular electronic structure, even not directly changing the conductive physical backbone, can tune the charge transporting ability by nearly one order of magnitude. Furthermore, the addition of another Lewis base triethylamine (of stronger alkaline than DBP), to Lewis acid-base pair reverts the electrical properties back to that of a single DBP junction, that is constructive to propose a useful but simple strategy for the design and construction of reversible and controllable molecular device based on pyridine derived molecule.  相似文献   
5.
6.
Determining the adsorption configurations of organic molecules on surfaces, especially for relatively small molecules, is a key issue for understanding the microscopic physical and chemical processes in surface science. In this work, we have applied low-temperature ultrahigh-vacuum tip-enhanced Raman scattering (TERS) technique to distinguish the configurations of small 4,4′-bipyridine (44BPY) molecules adsorbed on the Ag(111) surface. The observed Raman spectra exhibit notable differences in the spectral features which can be assigned to three different molecular orientations, each featuring a specific fingerprint pattern based on the TERS selection rule that determines the distribution of the relative intensities of different vibrational peaks. Furthermore, such a small molecule can in turn act as a local probe to provide information on the local electric field distribution at the tip apex. Our work showcases the capability of TERS technique for obtaining information on adsorption configurations of small molecules on surfaces down to the single-molecule level, which is of fundamental importance for many applications in the fields of molecular science and surface chemistry.  相似文献   
7.
ABSTRACT

Interactions of cycloheptatriene derivatives, C7H6X, (X?=?NH, PH, AsH, O, S, Se) with the cations H+, CH3+, Cu+, Al+, Li+, Na+, and K+ are studied using B3LYP functional and 6-311++G(d,p) basis set. The calculated gas-phase cation affinities (CA) and cation basicities (CB) for all molecules decrease as H+ > CH3+ > Cu+ > Al+ > Li+ > Na+ > K+. We used the induced aromaticity in the 7-membered ring of C7H6X upon interaction with the cations, M+, as a measure of C7H6X/M+ interaction. Nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) were used as two indices of aromaticity. The highest and lowest induced aromaticities were observed for interactions of H+ and K+, respectively. Also, the aromaticity induced by interaction with a cation in C7H6AsH and C7H6PH was larger than that in C7H6NH and C7H6O. Hence, the aromaticity was considered as a measure of covalency for the C7H6X/M+ interactions showing a rational dependence on both the molecule and cation. The nature of the interactions was also assessed using electron density, charge distribution analysis and NBO calculations. The results of the aromaticity indices, NICS and HOMA, were compared with the electron density and NBO results.  相似文献   
8.
We have developed a new database of structures and bond energies of 59 noble-gas-containing molecules. The structures were calculated by CCSD(T)/aug-cc-pVTZ methods and the bond energies were obtained using the CCSD(T)/complete basis set method. Many wavefunction-based and density functional theory methods have been benchmarked against the 59 accurate bond energies. Our results show that the MPW1B95, B2GP-PLYP, and DSD-BLYP functionals with the aug-cc-pVTZ basis set excel in predicting the bond energies of noble-gas molecules with mean unsigned errors (MUEs) of 2.0 to 2.1 kcal/mol. When combinations of Dunning's basis sets are used, the MPW1B95, B2GP-PLYP, DSD-BLYP, and BMK functionals give significantly lower MUEs of 1.6 to 1.9 kcal/mol. Doubly hybrid methods using B2GP-PLYP and DSD-BLYP functionals and MP2 calculation also provide satisfactory accuracy with MUEs of 1.4 to 1.5 kcal/mol. If the Ng bond energies and the total atomization energies of a group of 109 main-group molecules are considered at the same time, the MPW1B95/aug-cc-pVTZ single-level method (MUE = 2.7 kcal/mol) and the B2GP-PLYP and DSD-PLYP functionals with combinations of basis sets or using the doubly hybrid method (MUEs = 1.9-2.2 kcal/mol) give the overall best result.  相似文献   
9.
Two novel inclusion compounds of 4,4′‐sulfonyldibenzoate anions and tetrapropylammonium cations with different ancillary molecules of water and boric acid, namely bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate dihydrate, 2C12H28N+·C14H8O6S2−·H2O ( 1 ), and bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate bis(boric acid), 2C12H28N+·C14H8O6S2−·2H3BO3 ( 2 ), were prepared and characterized using single‐crystal X‐ray diffraction. In the two salts, the host 4,4′‐sulfonyldibenzoic acid molecules, which are converted to the corresponding anions under basic conditions, can be regarded as proton acceptors which link different proton donors of the ancillary molecules of water or boric acid. In this way, an isolated hydrogen‐bonded tetramer is constructed in salt 1 and a ribbon is constructed in salt 2 . The tetramers and ribbons are then packed in a repeating manner to generate various host frameworks, and the tetrapropylammonium guest counter‐ions are contained in the cavities of the host lattices to give the final stable crystal structures. In these two salts, although the host anion and guest cation are the same, the difference in the ancillary small molecules results in different structures, indicating the significance of ancillary molecules in the formation of crystal structures.  相似文献   
10.
A new molecular dyad consisting of a Cy5 chromophore and ferrocene (Fc) and a triad consisting of Cy5, Fc, and β‐cyclodextrin (CD) are synthesized and their photophysical properties investigated at both the ensemble and single‐molecule levels. Hole transfer efficiency from Cy5 to Fc in the dyad is reduced upon addition of CD. This is due to an increase in the Cy5‐Fc separation (r) when the Fc is encapsulated in the macrocyclic host. On the other hand, the triad adopts either a Fc‐CD inclusion complex conformation in which hole transfer quenching of the Cy5 by Fc is minimal or a quasi‐static conformation with short r and rapid charge transfer. Single‐molecule fluorescence measurements reveal that r is lengthened when the triad molecules are deposited on a glass substrate. By combining intramolecular charge transfer and competitive supramolecular interaction, the triad acts as an efficient chemical sensor to detect different bioactive analytes such as amantadine hydrochloride and sodium lithocholate in aqueous solution and synthetic urine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号