首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   99篇
  国内免费   137篇
化学   355篇
晶体学   16篇
力学   7篇
数学   84篇
物理学   296篇
  2023年   8篇
  2022年   15篇
  2021年   32篇
  2020年   40篇
  2019年   33篇
  2018年   23篇
  2017年   42篇
  2016年   37篇
  2015年   28篇
  2014年   47篇
  2013年   95篇
  2012年   35篇
  2011年   43篇
  2010年   47篇
  2009年   38篇
  2008年   24篇
  2007年   21篇
  2006年   39篇
  2005年   20篇
  2004年   20篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1985年   1篇
排序方式: 共有758条查询结果,搜索用时 15 毫秒
1.
2.
We presented an experimental apparatus combining the H-atom Rydberg tagging time-of-flight technique and the laser detonation source for studying crossed beam reactions athyperthermal collision energies. The preliminary study of the F+D2→DF+D reaction at hyperthermal collision energy of 23.84 kJ/mol was performed. Two beam sources were used in this study: one is the hyperthermal F beam source produced by a laser detonation process, and the other is D2 beam source generated by liquid-N2 cooled pulsed valve. Vibrational state-resolved di erential cross sections (DCSs) of product for the title reaction were determined. From the product vibrational state-resolved DCS, it can be concluded that products DF(v'=0, 1, 2, 3) are predominantly distributed in the sideway and backward scattering directions at this collision energy. However, the highest vibrational excited product DF(v'=4), is clearly peaked in the forward direction. The probable dynamical origins for these forward scattering products were analyzed and discussed.  相似文献   
3.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
4.
本文介绍了一种简便的方法制备n-十二烷基三甲氧基硅烷@三氧化钨包覆的超亲油超疏水的铜网.所制备的铜网显示了较为突出的超亲油和超疏水性能,该铜网的水接触角大约有154.39°,而油接触角接近于0°.实验利用了各种有机溶剂和水的混合物对所制备网膜进行分离性能测试,结果表明所得涂覆铜网的油水分离效率高达99.3V,并且水的通量大约为9962.3 L·h~(-1)·m~(-2).所制备的铜网具有良好的稳定性,经过10次分离循环后分离效率仍然保持在90%以上.由于三氧化钨优异的光催化降解性能,所制备铜网具有自清洁能力.因此,被润滑油污染的网膜可以恢复超疏水性,而这种自清洁性使所制网膜可以反复用于油水分离.  相似文献   
5.
Well‐defined A3B‐, A2B2‐, and AB3‐type 4‐miktoarm star copolymers (Mn = 10,500–16,200, Mw/Mn = 1.16–1.18) consisting of poly(ethylene oxide) (PEO) and polymethacrylate bearing an azobenzene mesogen (PMA(Az)) as the arms and cyclotetrasiloxane as the core unit were synthesized using a combined route composed of a thiol‐ene click reaction and atom transfer radical polymerization. Microphase‐separated structures of the star copolymers in thin films with a thickness of approximately 100 nm were investigated by GISAXS and TEM. The A3B‐type star‐(PEO)3[PMA(Az)]1 copolymer formed a more highly ordered PEO cylinder array with perpendicular alignment in the PMA(Az) matrix than that of the corresponding linear‐type block copolymer. The center‐to‐center distance of the PEO cylinders and the cylinder diameter were 13 and 4 nm, respectively. The highly ordered star‐(PEO)3[PMA(Az)]1 thin film was directly transferred to a siloxane‐based nanodot array by oxygen reactive ion etching. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1175–1188  相似文献   
6.
7.
本文介绍F?(H2O)+CH3I→[FCH3I]?+H2O在交叉分子束碰撞能量0.3∽2.6 eV的配体交换动力学成像结果. 产物的动能受到弱键结合配合物的稳定性的影响,大量水分子的内部激发不利于中间物有效的能量重新分配,随着碰撞增加,低动能受到抑制. 在0.3 eV时,内部亲核取代非常重要,为形成I?和I?(H2O)的竞争性亲核取代途径提供了依据.  相似文献   
8.
A design of ultrathin crystalline silicon solar cells patterned with α-NaEr_(0.2)Y_(0.8)F_4 upconversion nanosphere(NSs) arrays on the surface was proposed. The light trapping performance ofα-NaEr_(0.2)Y_(0.8)F_4 NSs with different ratios of sphere diameter to sphere pitch was systematically studied by COMSOL Multiphysics. The influence of different NS diameters and ratio to the average optical absorption of ultrathin crystalline silicon solar cell was calculated, as well as the short circuit current densities. The results show that the average optical absorption of solar cells with 2.33 μm silicon covered by α-NaEr_(0.2)Y_(0.8)F_4 NSs of 100 nm in diameter and 5.2 in ratio has improved by 8.5% compared to planar silicon solar cells with the same thickness of silicon. The light trapping performance of different thicknesses of silicon solar cells with the optimized configuration of NSs was also discussed. The results indicate that our structure enhances the light absorption. The presented model will be the basis for further simulations concerning frequency upconversion of α-NaEr_(0.2)Y_(0.8)F_4 materials.  相似文献   
9.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   
10.
The present work describes an exciting method for the selective and sensitive determination of calcitonin in human blood serum samples. Adopting the surface molecular imprinting technique, a calcitonin-imprinted polymer was prepared on the surface of the zinc oxide nanostructure. Firstly, a biocompatible tyrosine derivative as a monomer was grafted onto the surface of zinc oxide nanostructure followed by their polymerization on vinyl functionalized electrode surface by activator regenerated by electron transfer–atom transfer radical polymerization (ARGET–ATRP) technique. Such sensor can predict the small change in the concentration of calcitonin in the human body and it may also consider to be as cost-effective, renewable, disposable, and reliable for clinical studies having no such cross-reactivity and matrix effect from real samples. The morphologies and properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry and chronocoulometry. The linear working range was found to be 9.99 ng L−1 to 7.919 mg L−1 and the detection limit as low as 3.09 ± 0.01 ng L−1 (standard deviation for three replicate measurements) (S/N = 3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号