首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   18篇
  国内免费   89篇
化学   866篇
晶体学   37篇
力学   14篇
数学   4篇
物理学   255篇
  2023年   6篇
  2022年   11篇
  2021年   8篇
  2020年   16篇
  2019年   24篇
  2018年   21篇
  2017年   16篇
  2016年   30篇
  2015年   21篇
  2014年   38篇
  2013年   58篇
  2012年   48篇
  2011年   65篇
  2010年   62篇
  2009年   70篇
  2008年   72篇
  2007年   79篇
  2006年   74篇
  2005年   52篇
  2004年   74篇
  2003年   49篇
  2002年   25篇
  2001年   23篇
  2000年   19篇
  1999年   32篇
  1998年   19篇
  1997年   25篇
  1996年   19篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   18篇
  1991年   13篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   5篇
  1980年   6篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1969年   1篇
排序方式: 共有1176条查询结果,搜索用时 16 毫秒
1.
2.
A facile and environmentally friendly approach has been developed to prepare yolk‐shell porous microspheres of calcium phosphate by using calcium L ‐lactate pentahydrate (CL) as the calcium source and adenosine 5′‐triphosphate disodium salt (ATP) as the phosphate source through the microwave‐assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk‐shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk‐shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as‐prepared yolk‐shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH‐responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk‐shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.  相似文献   
3.
4.
Semiconductor materials containing bismuth have attracted the attention of researchers over the past several decades, as a result of their high photocatalytic activity in various reactions and/or high efficiency in their photoelectric conversion of solar energy. This interest originated from the observations that bismuth-containing semiconductors have a sufficiently small bandgap, which makes them sensitive to radiation in the visible spectral range; thus, visible-light-active materials. Among the various bismuth-containing semiconductor materials, the bismuthates of alkaline earth metals are distinguished and describe into separate groups. This article reviews research on the known methods of obtaining bismuthates of various alkaline earth metals (magnesium, calcium, strontium, and barium), and further analyzes their composition, structure, and visible-light-active photocatalytic activity.  相似文献   
5.
In an effort to reduce radiation exposure in the use of zircon minerals as opacity for the ceramic industry, it is required that the concentrations of UO2 and ThO2 contained in zircon must be less than 500 ppm. The purpose of this study was to reduce the concentration of UO2 and ThO2 in zircon minerals. The experimental investigation was initiated by synthesizing of calcium borate (CB), roasting of zircon concentrate with CB at various temperatures, and leaching with hydrochloric acid. The product quality of zircon minerals before and after roasting and leaching was characterized by Fourier Transform Infrared Spectrometer, X-Ray Diffractometer, and X-ray Fluorescence Spectrometer. The experimental results show that roasting zircon concentrate with CB at a zircon/CB ratio of 5/5 (weight/weight), a temperature of 1200 °C, a contact time of 3 h, and the leaching of the roasted results with 6 M HCl can reduce the total concentration of UO2 and ThO2 in zircon from 2008,1 ppm to 498.4 ppm. It can be concluded that the prototype zircon product from the experimental results has fulfilled the premium grade zircon with UO2 and ThO2 content of less than 500 ppm.  相似文献   
6.
《印度化学会志》2023,100(2):100901
The novel calcium titanate-lithium lanthanum titanate doped with zinc oxide (0.10, 0.30, and 0.50 mol. %) ceramic samples were prepared by solid-state reaction route. The phase formation, microstructure, densification, and microwave dielectric properties were investigated. It was found that the doping with zinc oxide led to a decrease in sintering temperature by 25 oC as compared with pure calcium titanate lithium lanthanum titanate due to the liquid phase effect. Also, the calcium titanate lithium lanthanum titanate (10ZCTLLT&30ZCTLLT)) doped with lower zinc oxide (0.10 and 0.30 mol. %) led to higher densification parameter. This was followed by increasing the zinc oxide doping up to (0.50 mol. %) which resulted in a decrease in densification and microwave dielectric properties which may be attributed to increase in porosity and grain growth upon the evaporation of zinc and oxygen vacancy. This led to the increase in dielectric loss (≈10 × 10?4) value with 50ZCTLLT. Hence, the best result of microwave dielectric characteristics was obtained for 0.5CaTiO3–0.5(Li0.5La0.5)TiO3 with (0.10 and 0.30 mol. % ZnO) 10ZCTLLT and 30ZCTLLT ceramic samples sintered at 1175 oC/2h, with low dielectric constant (εr) = 4.4–10.5, very low dielectric loss = 1.07-2.23 × 10?4 and high quality factor (Q x ?) ≈59-55 × 104 at 8 GHz. Consequently, they can be used not only in wireless satellite communications technology but also can be used in the fifth-generation telecommunication 5G technology construction.  相似文献   
7.
Herein,copper ion doped calcium alginate(Cu~(2+)/CaAlg) composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg) as raw material.The thermal stability and structure of the composite membranes were characterized by thermogravimetric analysis and infrared spectroscopy.The mechanical strength,anti-fouling performance,hydrophilicity and filtration performance of the membrane were studied.The results show that Cu~(2+)/CaAlg hydrogel membrane has excelle nt mechanical properties and thermal stability.The anti-swelling ability of the membrane was greatly enhanced by doping Cu~(2+).After three alternate filtration cycles,the flux recovery rate of Cu~(2+)/CaAlg hydrogel membrane can still reach 85%,indicating that the membrane has good antipollution performance.When the operation pressure was 0.1 MPa,the rejection of coomassie brilliant blue G250 reached 99.8% with a flux of 46.3 L m ~2 h ~1,while the Na_2 SO_4 rejection was less than 10.0%.The Cu~(2+)/CaAlg membrane was recycled after 24 h in the filtration process,and its flux and rejection rate did not decrease significantly,indicating that the hydrogel membrane has long-term application potential.The Cu~(2+)/CaAlg membrane has a wide range of applications prospect in dye desalination,fine separation and biopharmaceutical technology fields.  相似文献   
8.
钙钛矿型羟基锡酸盐是近年来出现的新型高效阻燃消烟剂. 本文采用化学共沉淀法合成了微纳米钙钛矿型羟基锡酸钙[CaSn(OH)6, CSH], 并利用扫描电子显微镜、 透射电子显微镜、 X射线衍射仪、 红外光谱仪和X射线光电子能谱仪等对其形貌和结构进行表征. 结果表明合成的CaSn(OH)6为平均粒径500 nm的纯净正六面体, 粒径均一且分散性良好. 将CaSn(OH)6应用于环氧树脂(EP)复合阻燃体系(CSH/EP), 并分别采用热重分析、 极限氧指数和锥形量热测试表征了其热降解行为和燃烧性能. 采用扫描电子显微镜、 红外光谱、 X射线衍射和拉曼光谱对EP复合材料的阻燃成炭机制进行探索. 结果表明, CaSn(OH)6能显著提高EP复合材料的高温稳定性、 热释放速率、 热释放量、 烟释放量和极限氧指数数值. 特别是在很低添加量(0.5%, 质量分数)下, 阻燃消烟性能即得到极大提升, 热释放速率、 总放热量和一氧化碳释放量分别降低45.8%, 25.1%和31.3%. 此外, 由于CaSn(OH)6在EP基体中的良好分散及较强的界面作用, CaSn(OH)6在提升EP复合材料阻燃消烟性的同时还提升了EP复合材料的力学强度. 本文合成的CaSn(OH)6可作为一种多功能的高效阻燃、 消烟和增强剂.  相似文献   
9.
《印度化学会志》2021,98(8):100097
Two rare hetero-metallic calcium(II)-zinc(II) complexes [CaZn4(OBz)102-hmt)2]n (1) and [Ca2Zn4(OBz)122-hmt)2]n (2) have been synthesized using basic zinc carbonate, benzoic acid (HOBz), hydrated calcium chloride and hexamethylenetetramine (hmt) by varying the molar ratio of the reactants. Both the complexes have been analyzed by elemental analysis, IR spectroscopy and X-ray crystallography. The complex 1 is a 1D polymer which contains one calcium ion and four zinc atoms in the asymmetric unit together with ten benzoates and two hmts. The polymer has been constructed by the alternate joining of paddle-wheel Zn2(OBz)4 units and Zn2Ca trinuclear species by μ2-hmt bridging molecules connecting Zn2+ ions. Zinc atoms have five coordinate square pyramidal geometries and four coordinate tetrahedral geometries in Zn2(OBz)4 and Zn2Ca moieties, respectively, whereas calcium atoms have six-coordinate distorted octahedral geometry. Complex 2 is also a 1D polymer but unlike complex 1, it contains four independent zinc and two independent calcium atoms in the asymmetric unit together with twelve benzoates and two hmts. By contrast, the polymeric structure of complex 2 has been formed by the connection of Zn2Ca trinuclear species via μ2 hmt bridging molecules at Zn centers. Complex 2 is also a 1D polymer but unlike complex 1, it contains four independent zinc and three independent calcium atoms in the asymmetric unit together with twelve benzoates and two hmts. All four zinc atoms are four coordinate with tetrahedral environments and the calcium atoms are six coordinated (two are located on a center of symmetry) exhibiting a distorted octahedral geometry.  相似文献   
10.
Oil refinery is one of the fast growing industries across the globe and it is expected to progress in the near future. The worldwide increase in the generation of refinery wastewater along with strict environmental regulations in the discharge of industrial effluent, persistent efforts have been devoted to recycle and reuse the treated water. The wastewater from the refining operation leads to serious environmental threat to the ecosystem. Therefore, this study aimed to synthesize silica (SiO2) and calcium carbonate nanoparticles (CaCO3) in the reduction of organics from refinery wastewater. The synthesized nanoparticles were employed in the reduction of chemical oxygen demand (COD) from refinery wastewater by studying the influence of solution pH, contact time, dosage of nanoparticles and stirring speed on adsorption performance. From the batch experimental studies, the optimized processing conditions for the reduction of COD using SiO2 nanoparticles are pH 4.0, dosage 0.5 g, stirring speed 125 rpm and 90 min stirring time, and the corresponding values for CaCO3 nanoparticles are pH 8.0, dosage 0.4 g, stirring speed 100 rpm and 90 min stirring time. The study demonstrates that SiO2 and CaCO3 nanoparticles have a promising future in the reduction organics from refinery wastewater in different pH regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号