首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1900篇
  免费   111篇
  国内免费   287篇
化学   2022篇
晶体学   25篇
力学   6篇
数学   1篇
物理学   244篇
  2023年   64篇
  2022年   19篇
  2021年   41篇
  2020年   49篇
  2019年   59篇
  2018年   51篇
  2017年   70篇
  2016年   50篇
  2015年   55篇
  2014年   78篇
  2013年   158篇
  2012年   102篇
  2011年   105篇
  2010年   97篇
  2009年   129篇
  2008年   123篇
  2007年   116篇
  2006年   113篇
  2005年   105篇
  2004年   123篇
  2003年   84篇
  2002年   42篇
  2001年   44篇
  2000年   34篇
  1999年   44篇
  1998年   44篇
  1997年   38篇
  1996年   36篇
  1995年   35篇
  1994年   26篇
  1993年   29篇
  1992年   23篇
  1991年   27篇
  1990年   19篇
  1989年   12篇
  1988年   12篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有2298条查询结果,搜索用时 31 毫秒
1.
A water circulation system with the almost same element composition and socket type was adopted in coral Acropora culture under different seawater pH value conditions and the data of the relationship between boron isotopic compositions of coral and seawater pH value by thermoelectric ionization mass spectrometer were obtained. According to the correlations between αcarb-3 of coral and the pH value of cultured seawater, αcarb-3 was not a constant but related to pH value, indicating that B(OH)3 also incorporated carbonate. Therefore, the theoretical formula could not be used to calculate the seawater pH value from the δ11Bcarb value of the measured marine biological carbonate. The empirical equations obtained experimentally would be an alternative method to calculate the seawater pH value. In addition, the mixed precipitation of CaCO3 and Mg(OH)2 was found in aquaculture tanks with high pH value, and the δ11B of the solid was significantly higher than that of cultured seawater. The result indicated that the presence of Mg(OH)2 had a significant effect on the boron isotope fractionation, which deserved our attention.  相似文献   
2.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   
3.
An asymmetric total synthesis of the guaiane sesquiterpene (?)‐englerin A, a potent and selective inhibitor of the growth of renal cancer cell lines, was accomplished. The basis of the approach is a highly diastereo‐ and enantioselective carbonyl ylide cycloaddition with an ethyl vinyl ether dipolarophile under catalysis by dirhodium(II) tetrakis[N‐tetrachlorophthaloyl‐(S)‐tert‐leucinate], [Rh2(S‐TCPTTL)4], to construct the oxabicyclo[3.2.1]octane framework with concomitant introduction of the oxygen substituent at C9 on the exo‐face. Another notable feature of the synthesis is ruthenium tetraoxide‐catalyzed chemoselective oxidative conversion of C9 ethyl ether to C9 acetate.  相似文献   
4.
《Physics letters. A》2020,384(21):126518
Superhard materials have always attracted people's interesting due to their extensive industrial applications. In this work, two reasonable superhard monoclinic allotropes of boron nitrides with space group of Cm have been designed based on previously proposed M-carbon structure using first-principles calculations. Our results show that Cm-BN-1 and Cm-BN-2 are dynamically stable, and they are direct semiconductors with bandgap of 2.69 and 3.90 eV, respectively. Moreover, they could be potential superhard materials with Vickers hardness of 58.0 and 60.4 GPa, respectively. This work provides insights for exploring new superhard boron nitrides materials.  相似文献   
5.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   
6.
Ammonia, NH3, is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber–Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2. This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4+, the acidic form of NH3. EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2B radicals.  相似文献   
7.
The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.  相似文献   
8.
Targeted delivery and specific activation of photosensitizers can greatly improve the treatment outcome of photodynamic therapy. To this end, we report herein a novel dual receptor-mediated bioorthogonal activation approach to enhance the tumor specificity of the photodynamic action. It involves the targeted delivery of a biotinylated boron dipyrromethene (BODIPY)-based photosensitizer, which is quenched in the native form by the attached 1,2,4,5-tetrazine unit, and an epidermal growth factor receptor (EGFR)-targeting cyclic peptide conjugated with a bicycle[6.1.0]non-4-yne moiety. Only for cancer cells that overexpress both the biotin receptor and EGFR, the two components can be internalized preferentially where they undergo an inverse electron-demand Diels–Alder reaction, leading to restoration of the photodynamic activity of the BODIPY core. By using a range of cell lines with different expression levels of these two receptors, we have demonstrated that this stepwise “deliver-and-click” approach can confine the photodynamic action on a specific type of cancer cells.  相似文献   
9.
Development of new n-type semiconductors with tunable band gap and dielectric constant has significant implication in dissociating bound charge carrier relevant for demonstrating high performance optoelectronic devices. Boron-β-thioketonates (MTDKB), analogues to boron-β-diketonates containing a sulfur atom in the framework of β-diketones were synthesized. Bulk transport measurement exhibited an outstanding bulk electron mobility of ≈0.003 cm2 V−1 s−1, which is among the best values reported till date in these class of semiconducting materials and correspondingly a single junction photo responsivity of upto 6 mA W−1 was obtained. This new family of O,S-chelated boron compounds exhibited luminescence in the far red/near-infrared region. The remarkable red shift of 89 nm (fluorescence) observed for 4 a in comparison with analogues boron-β-diketonate signifies the importance of sulfur in these molecules. MTDKBs with amine functionality have also been investigated as an ON/OFF fluorescent sensor.  相似文献   
10.
Narrowband organic light-emitting diodes (OLEDs) are receiving significant attention and have demonstrated impressive performance in blue and green OLEDs. However, developing high-performance narrowband red OLEDs remains a highly desired yet challenging task. Herein, we have developed narrowband red fluorescent emitters by utilizing a boron-dipyrromethene (BODIPY) skeleton in combination with a methyl-shield strategy. These emitters exhibit small full-width at half-maxima (FWHM) ranging from 21 nm (0.068 eV) to 25 nm (0.081 eV) and high photoluminescence quantum yields (ΦPL) ranging from 88.5 % to 99.0 % in toluene solution. Using BODIPY-based luminescent materials as emitters, high-performance narrowband red OLEDs have been assembled with external quantum efficiency as high as 18.3 % at 623 nm and 21.1 % at 604 nm. This work represents, to our knowledge, the first successful case of achieving NTSC pure-red OLEDs with the Commission Internationale de l’Éclairage (CIE) coordinates of [0.67, 0.33] based on conventional fluorescent emitters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号