首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  国内免费   1篇
  完全免费   8篇
  物理学   62篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   10篇
  2010年   7篇
  2009年   12篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有62条查询结果,搜索用时 109 毫秒
1.
Hydroxyapatite Ca10(PO4)6(OH)2 (HAP) is known as a bioactive and biocompatible material, HAP coatings were used to improve the biocompatible of substrate by many researcher, In this work, HAP thin films on porous silicon (PS) substrates have been prepared by aqueous precipitation method with rapid thermal annealing (RTA) processes. The HAP films had been prepared under the annealing temperature ranging from 300 to 1000 °C. By the measurement of X-ray diffraction (XRD), it was found that for the crystallinity optimization, the heat-treatment at 850–950 °C for 1 h would be favorable. Atomic force microscopy (AFM) and scanning electron microscope (SEM) measurements reveal a dense and smooth surface of the HAP film, and tightly adherence of the coating on porous silicon substrate after sintered. Thus, by this method, porous silicon could be increased its bioactivity and so that could be used in the biomedical area.  相似文献
2.
21世纪我国生物材料科学展望   总被引:2,自引:0,他引:2  
邹翰 《物理》1997,26(5):264-267
介绍了有关生物材料的基本概念和我国生物材料的发展概况及存在问题,并对21世纪生物材料科学发展的趋势及应优先发展的课题提出了一些看法。  相似文献
3.
复合荧光CdSe量子点-脂质体的制备与表征   总被引:2,自引:2,他引:0  
冯力蕴  孔祥贵 《发光学报》2007,28(3):417-420,I0001
通过脂质体方法成功地将三辛基氧化膦(TOPO)包覆的CdSe发光量子点从非极性有机溶剂转移到生物相容性的水溶液中。分别通过透射电镜(TEM)、荧光Mapping图像,以及光致发光(PL)光谱进行表征。TEM照片显示制备的CdSe核量子点为球形,具有良好的单分散特性,平均粒径约为3nm。CdSe-脂质体复合体的平均尺寸大约20nm,TEM清楚地显示了CdSe量子点被诱捕在脂质体中。荧光Mapping显示了CdSe-脂质体复合体的发光强度分布。脂质体方法转移TOPO包覆的CdSe量子点,借助了磷脂的双分子链与CdSe表面的TOPO配体之间的疏水相互作用,在CdSe的第一配体层外部形成第二配体层,保留了CdSe的存在环境,光致发光光谱表明,量子点-脂质复合体基本保持了CdSe核量子点的发射效率。  相似文献
4.
Phytic acid (PA) conversion coating on WE43 magnesium alloy was prepared by the method of immersion. The influences of phytic acid solution with different pH on the microstructure, properties of the conversion coating and the corrosion resistance were investigated by SEM, FTIR and potentiodynamic polarization method. Furthermore, the biocompatibility of different pH phytic acid solution modified WE43 magnesium alloys was evaluated by MTT and hemolysis test. The results show that PA can enhance the corrosion resistance of WE43 magnesium especially when the pH value of modified solution is 5 and the cytotoxicity of the PA coated WE43 magnesium alloy is much better than that of the bare WE43 magnesium alloy. Moreover, all the hemolysis rates of the PA coated WE43 Mg alloy were lower than 5%, indicating that the modified Mg alloy met the hemolysis standard of biomaterials. Therefore, PA coating is a good candidate to improve the biocompatibility of WE43 magnesium alloy.  相似文献
5.
医用碳纤维的拉曼散射   总被引:1,自引:1,他引:0  
本文报道了三种不同碳含量的碳纤维植入犬体前后的拉曼光谱,实验结果表明,碳化温度越高,碳纤维的石墨化程度越高,碳纤维植入犬体一年后,其表面石墨化程度降低,但碳纤维主体仍为良好的石墨结构。  相似文献
6.
ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.  相似文献
7.
In order to improve the biomedical properties of a titanium alloy surface, electro-spark surface alloying was carried out using a graphite electrode in air, in a nitrogen gas atmosphere and in silicone oil. The morphology and microstructure of the strengthened layers were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hardness distributions as a function of depth were measured by a micro-hardness tester. Corrosion resistance capacities of the modified layers were evaluated using potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). In addition, wear resistance and corrosive wear properties in a simulated body fluid (SBF) were studied with a pin-on-disk tribometer. Alloyed layers, completely covering the substrate surface and about 40 μm thick mainly composed of the TiC phase and with strong metallurgical bonding and adhesion to the substrate, were obtained. This can markedly improve hardness and wear resistance of the surface layer of the substrate. In comparison to coatings prepared in air and nitrogen gas atmospheres, the coating produced in silicone oil media exhibits a denser and more perfect surface structure. The wear resistance in air and corrosive wear resistance in SBF solution is the best for the coating produced in silicone oil. For instance, the wear rate in air with a GCr15 steel ball counterpart is reduced by a factor of 29 compared with the original titanium alloy and the corrosive wear rate in SBF solution with a corundum ball can decrease by a factor of 13.8. Simultaneously, the effect of electron-spark surface alloying of the titanium alloy surface on biocompatibility and biological activity was also investigated. The electron-spark surface strengthened layer treated in silicone oil shows good biocompatibility and biological activity, and can help cell attachment to the substrate surface.  相似文献
8.
Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.  相似文献
9.
Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp3/sp2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.  相似文献
10.
Surface free energy of biocompatible polymers is important factor which affects the surface properties such as wetting, adhesion and biocompatibility. In the present work, the change in the surface free energy of ultra-high molecular weight polyethylene (UHMWPE) samples, which is produced by electron beam and gamma ray irradiation were, investigated. Mechanism of the changes in surface free energy induced by irradiations of doses ranging from 25 to 500 kGy was studied. FTIR technique was applied for sample analysis. Contact angle measurements showed that wettability and surface free energy of samples have increased with increasing the irradiation dose, where the values of droplet contact angle of the samples decrease gradually with increasing the radiation dose. The increase in the wettability and surface free energy of the irradiated samples are attributed to formation of hydrophilic groups on the polymer surface by the oxidation, which apparently occurs by exposure of irradiated samples to the air.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号