首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   1篇
  物理学   7篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
如何求解阻尼边界封闭空间中声源点到接收点的低频声传递函数已成为目前小尺度封闭空间可听化技术研究的关键技术,能处理任意形状及复杂边界条件的有限元素法可作为求解该问题的适合方法,以室内声声有源Helmholtz方程及其相应边界方程为基础,本文推导出了用于小尺度阻尼边界封闭空间声传递函数的有限元素求解方法,并编制了相应的计算机程序,在算例中,首先通过与模态叠加法计算结果进行比较,验证了该方法的正确性。最后计算了某型车体内腔中任意两点间声传递函数。  相似文献
2.
Questions exist as to the intelligibility of vowels sung at extremely high fundamental frequencies and, especially, when the fundamental frequency (F0) produced is above the region where the first vowel formant (F1) would normally occur. Can such vowels be correctly identified and, if so, does context provide the necessary information or are acoustical elements also operative? To this end, 18 professional singers (5 males and 13 females) were recorded when singing 3 isolated vowels at high and low pitches at both loud and soft levels. Aural-perceptual studies employing four types of auditors were carried out to determine the identity of these vowels, and the nature of the confusions with other vowels. Subsequent acoustical analysis focused on the actual fundamental frequencies sung plus those defining the first 2 vowel formants. It was found that F0 change had a profound effect on vowel perception; one of the more important observations was that the target tended to shift toward vowels with an F1 just above the sung frequency.  相似文献
3.
Subjective speech intelligibility can be assessed by speech recorded in an anechoic chamber and then convolved with room impulse responses that can be created by acoustic simulation. The speech intelligibility (SI) assessment based on auralization was validated in three rooms. The articulation scores obtained from simulated sound field were compared with the ones from measured sound field and from direct listening in rooms. Results show that the speech intelligibility prediction based on auralization technique with simulated binaural room impulse responses (BRIRs) is in agreement with reality and results from measured BRIRs. When this technique is used with simulated and measured monaural room impulse responses (MRIRs), the predicted results underestimate the reality. It has been shown that auralization technique with simulated BRIRs is capable of assessing subjective speech intelligibility of listening positions in the room.  相似文献
4.
Submarine warfare continues to pose a threat in present-day military operations. Visual displays play a dominant role for operator detection and classification of underwater and surface targets. However, the visual modality is ineffective for the detection of transient signals. In spite of quieter submarines, transient sounds such as hull popping are difficult to disguise, which makes them more likely to be detected via an auditory display. Operators tend to use auditory displays less often because several factors can impede effective aural processing. In this paper, the sonar problem is reviewed followed by some proposed techniques for making more effective use of the auditory modality for the presentation of sonar signals as a means of further improving operator detection and classification of targets. Some recommendations for augmenting the aural presentation of sonar signals over headphones are then discussed. Key research areas include: (1) a reduction of the sound level of the ambient noise in noisy environments should improve the likelihood that the operator will detect weak signals; (2) the provision to replay sound bites of interest and to compare these against a library of known archetypes should lead to increased accuracy in target classification; (3) the ability to present sonar beams in a three-dimensional auditory display where the spatial position of each sonar beam corresponds to the actual position of the source in the ocean should enable the operator to monitor multiple beams and increase his/her situational awareness. Ultimately, the viability of an auditory display is dependent on operator hearing acuity.  相似文献
5.
Auralizations are commonly used today by architectural acousticians as a tool to model acoustically sensitive spaces. This paper presents investigations employing an auralization methodology known as multi-channel auralizations, to determine the benefits of using an increasing number of channels in such auralizations. First an objective evaluation was conducted to examine how acoustic parameters, such as reverberation time, vary when using “quadrant” (one fourth of a spherical source) or “thirteenth” sources to create the binaural room impulse responses. Large differences in the values were found between the different sections of the sphere, on the order of several just noticeable differences. Two subjective studies were then pursued, first to determine if auralizations made with an increasing number of channels sound more realistic and have an increased perceived source size, using solo musical instruments of varying directivity indices as the sources. Overall, subjects perceived the auralizations made with an increasing number of channels as more realistic, whereas results for perceived source size are less clear. The second subjective study assessed the ease with which subjects could identify the source orientation from the auralizations as a function of number of channels. Results indicate that more channels made it easier for subjects to differentiate between source orientations.  相似文献
6.
Evaluations of the predictions and auralizations from the room acoustic modeling program, ODEON, have been run using three directional source types with the same sound power: (a) an omni-directional source; (b) three sources with realistically-directional characteristics based on measurements from real instruments (grand piano, violin, and singing voice); and (c) an artificial, extremely directional beaming source. Objective analyses have been run for nine source/receiver combinations in a simple hall on three acoustic parameters: relative sound pressure level (SPL), reverberation time (T30), and clarity index (C80). Auralizations were subsequently created for two source/receiver combinations and used in subjective testing with 28 subjects. Results show that, objectively, differences in SPL were negligible for the majority of cases. Some differences in T30 and C80 were found between the omni-directional and realistically-directional sources; however, subjects did not perceive any corresponding differences when comparing the auralizations, possibly due to the limited directional octave band data available. Subjects did significantly differentiate between auralizations from the omni-directional source and the extreme beaming source. Subjective results from comparing these two sources in terms of reverberation, clarity and realism were generally consistent with objective data, although source/receiver combination and musical track had some influence on the outcomes.  相似文献
7.
This paper describes a novel aircraft noise simulation technique developed at RWTH Aachen University, which makes use of aircraft noise auralization and 3D visualization to make aircraft noise both heard and seen in immersive Virtual Reality (VR) environments. This technique is intended to be used to increase the residents’ acceptance of aircraft noise by presenting noise changes in a more directly relatable form, and also aid in understanding what contributes to the residents’ subjective annoyance via psychoacoustic surveys. This paper describes the technique as well as some of its initial applications. The reasoning behind the development of such a technique is that the issue of aircraft noise experienced by residents in airport vicinities is one of subjective annoyance. Any efforts at noise abatement have been conventionally presented to residents in terms of noise level reductions in conventional metrics such as A-weighted level or equivalent sound level Leq. This conventional approach however proves insufficient in increasing aircraft noise acceptance due to two main reasons – firstly, the residents have only a rudimentary understanding of changes in decibel and secondly, the conventional metrics do not fully capture what the residents actually find annoying i.e. characteristics of aircraft noise they find least acceptable. In order to allow least resistance to air-traffic expansion, the acceptance of aircraft noise has to be increased, for which such a new approach to noise assessment is required.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号