首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2230篇
  免费   440篇
  国内免费   394篇
化学   1883篇
晶体学   90篇
力学   78篇
综合类   7篇
数学   7篇
物理学   999篇
  2024年   2篇
  2023年   53篇
  2022年   101篇
  2021年   96篇
  2020年   196篇
  2019年   120篇
  2018年   117篇
  2017年   118篇
  2016年   164篇
  2015年   137篇
  2014年   140篇
  2013年   196篇
  2012年   143篇
  2011年   153篇
  2010年   147篇
  2009年   135篇
  2008年   110篇
  2007年   158篇
  2006年   119篇
  2005年   94篇
  2004年   103篇
  2003年   92篇
  2002年   41篇
  2001年   50篇
  2000年   44篇
  1999年   29篇
  1998年   30篇
  1997年   38篇
  1996年   21篇
  1995年   20篇
  1994年   12篇
  1993年   22篇
  1992年   14篇
  1991年   10篇
  1990年   14篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1981年   2篇
  1979年   3篇
  1973年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有3064条查询结果,搜索用时 78 毫秒
1.
Photocatalytic CO2 reduction to C1 fuels is considered to be an important way for alleviating increasingly serious energy crisis and environmental pollution. Due to the environment-friendly, simple preparation, easy formation of highly-stable metal-nitrogen(M-Nx) coordination bonds, and suitable band structure, polymeric carbon nitride-based single-atom catalysts(C3N4-based SACs) are expected to become a potential for CO2 reduction under visible-light irradiation. In this review, we summarize the recent advancement on C3N4-based SACs for photocatalytic CO2 reduction to C1 products, including the reaction mechanism for photocatalytic CO2 reduction to C1 products, the structure and synthesis methods of C3N4-based SACs and their applications toward photocatalytic CO2 reduction reaction(CO2RR) for C1 production. The current challenges and future opportunities of C3N4-based SACs for photoreduction of CO2 are also discussed.  相似文献   
2.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   
3.
将五硼酸铵、 氨硼烷络合物和氧化镁混合, 球磨均匀后, 在1200 ℃及0.6 L/min流动氨气保护条件下退火6 h, 即可在氧化铝基片上收集到白色毛状产物. 采用X射线衍射(XRD), 红外光谱(FTIR)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 拉曼光谱(Raman)、 紫外-可见吸收光谱(UV-Vis)和荧光光谱(PL)对产物进行了表征. 结果表明, 样品呈一维线状分级结构, 长度大于5 mm, 中间为竹节状空心结构, 内部管径为50~350 nm, 外径范围为200~800 nm. 分级结构表面负载了大量氮化硼(BN)纳米薄片, 单个薄片厚度约为13 nm. 薄片弯曲褶皱, 相互交织, 构成1个氮化硼片层, 其厚度约为50~200 nm. UV-Vis和PL光谱测试结果表明, 氮化硼纳米管(BNNT)分级结构在紫外光材料领域具有一定的应用潜力, 且对亚甲基蓝具有良好的吸附能力(7 min即可吸附71%, 107 min时可吸附96%). 对比实验结果表明, BNNT的生长机理遵循气-液-固相(VLS)模型, 而表面负载的超薄BN片的生长机理遵循气-固相(VS)模型.  相似文献   
4.
Magnetic CuFe2O4/g‐C3N4 hybrids were synthesized through a facile method and their catalytic performances were evaluated in click chemistry for the first time. The structural and morphological characterization of prepared materials was carried out by different techniques such as X‐ray diffraction, high‐resolution transmission electron microscopy, field emission scanning electron microscopy, Fourier infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, and N2 adsorption–desorption analysis (Brunauer–Emmett–Teller surface area). The utilization of magnetic CuFe2O4/g‐C3N4 enabled superior performance in the one‐pot azide–alkyne cycloaddition reaction in water using alkyl halides and epoxides as azide precursors without the need of any additional agents. The present system is broad in scope and especially practical for the synthesis of macrocyclic triazoles and also tetrazoles. In addition, the catalytic system highly fulfills the demands of “green click chemistry” with its convenient conditions, especially easy access to a variety of significant products in low catalyst loading and simple work‐up and isolation procedure.  相似文献   
5.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   
6.
The experimental achievement of phosphorene, which exhibits superior electronic, physical, and optical properties has spurred recent interest in other Group 15 elemental 2D nanomaterials such as arsenene, antimonene, and bismuthene. These unique and superior properties of the pnictogen nanosheets have spurred intensive research efforts and led to the discovery of their diversified potential applications; for instance, optical Kerr material, photonic devices, pnictogen-decorated microfibers, high-speed transistors, and flexible 2D electronics. Previous studies have mainly been dedicated to study the synthesis, properties, and applications of the heavy pnictogens nanosheets; however, the toxicological behaviour of these nanosheets has yet to be established. Herein, the cytotoxicity study of pnictogen nanosheets (As, Sb, and Bi) was conducted over 24 h of incubation with various concentrations of test materials and adenocarcinoma human lung epithelial A549 cells. After the treatment period, the remaining cell viabilities were obtained through absorbance measurements with WST-8 and MTT assays. These findings demonstrate that the toxicity of pnictogen nanosheets decreases down Group 15, whereby arsenic nanosheets are considered to be the most toxic, whereas bismuth nanosheets induce low cytotoxicity. The findings of this study constitute an important initial step towards enhancing our understanding of the toxicological effects of pnictogen nanosheets in light of their prospective commercial applications.  相似文献   
7.
The development of highly active and cost‐effective catalyst materials toward electrochemical water splitting is of great importance for converting and storing the intermittent solar energy in the form of hydrogen. Herein, for the first time, an ultrathin Fe and N‐co‐doped carbon nanosheet encapsulated Fe‐doped CoNi alloy nanoparticle (FeCoNi@FeNC) composite is obtained and applied as a bifunctional catalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This catalyst exhibits prominent catalytic performances for both HER and OER, which only requires overpotentials of 102 and 330 mV, respectively, to reach a current density of 10 mA cm?2 in alkaline media. The high catalytic activity is intrinsically associated with the presence of Fe in both nanosheets and nanoparticles, which has triggered the occurrence of coordinative effects between Fe‐N‐C and FeCoNi that are beneficial for HER and OER, as revealed by electrochemical techniques. In an overall water splitting electrolyzer, FeCoNi@FeNC is employed as both the cathode and anode catalysts, achieving 12 mA cm?2 at 1.63 V for a duration of more than 12 h.  相似文献   
8.
In this study, the synthesis of TaN nanosheets and their application in theranostic agents is reported. After coating polyethylene glycol (PEG) on the TaN nanosheets, the as-synthesized PEG-modified TaN nanosheets (TaN-PEG) show good stability and biocompatibility. Because of their high absorbance in the near-IR region, TaN-PEG can be utilized as photoacoustic imaging contrast agents for tumor imaging. Moreover, TaN-PEG has significant photothermal conversion performance, exhibiting effective laser-induced tumor ablation capability. The TaN-PEG possessing excellent photoacoustic contrast effect and photothermal properties thus have great promise in theranostic applications, especially imaging-guided cancer treatment.  相似文献   
9.
The structural and electronic properties of Pt4 nanoparticles adsorbed on monolayer graphitic carbon nitride (Pt4/g-C3N4), as well as the adsorption behavior of oxygen molecules on the Pt4/g-C3N4 surface have been investigated through first-principles density-functional theory (DFT) calculations with the generalized gradient approximation (GGA). The interaction of the oxygen molecules with the bare g-C3N4 and the Pt4 clusters was also calculated for comparison. Our calculations show that Pt nanoparticles prefer to bond with four edge N atoms on heptazine phase g-C3N4 (HGCN) surfaces, forming two hexagonal rings. For s-triazine phase g-C3N4 (TGCN) surfaces, Pt nanoparticles prefer to sit atop the single vacancy site, forming three bonds with the nearest nitrogen atoms. Stronger hybridization of the Pt nanoparticles with the sp2 dangling bonds of neighboring nitrogen atoms leads to the Pt4 clusters strongly binding on both types of g-C3N4 surface. In addition, the results from Mulliken charge population analyses suggest that there are electrons flowing from the Pt clusters to g-C3N4. According to the comparative analyses of the O2 adsorbed on the Pt4/HGCN, Pt4/TGCN, and pure g-C3N4 systems, the presence of metal clusters promotes greater electron transfer to oxygen molecules and elongates the O―O bond. Meanwhile, its greater adsorbate-substrate distortion and large adsorption energy render the Pt4/HGCN system slightly superior to the Pt4/TGCN system in catalytic performance. The results validate that being supported on g-C3N4 may be a good way to modify the electronic structure of materials and their surface properties improve their catalytic performance.  相似文献   
10.
A facile liquid‐phase exfoliation method to prepare few‐layer FeOCl nanosheets in acetonitrile by ultrasonication is reported. The detailed exfoliation mechanism and generated products were investigated by combining first‐principle calculations and experimental approaches. The similar cleavage energies of FeOCl (340 mJ m?2) and graphite (320 mJ m?2) confirm the experimental exfoliation feasibility. As a Fenton reagent, FeOCl nanosheets showed outstanding properties in the catalytic degradation of phenol in water at room temperature, under neutral pH conditions, and with sunlight irradiation. Apart from the increased surface area of the nanosheets, the surface state change of the nanosheets also plays a key role in improving the catalytic performance. The changes of charge density, density of states (DOS), and valence state of Fe atoms in the exfoliated FeOCl nanosheets versus plates illustrated that surface atomistic relationships made the few‐layer nanosheets higher activity, indicating the exfoliation process of the FeOCl nanosheets also brought about surface state changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号