首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3600篇
  免费   81篇
  国内免费   720篇
化学   3435篇
晶体学   8篇
力学   34篇
数学   16篇
物理学   908篇
  2024年   13篇
  2023年   94篇
  2022年   147篇
  2021年   76篇
  2020年   122篇
  2019年   90篇
  2018年   78篇
  2017年   110篇
  2016年   119篇
  2015年   88篇
  2014年   134篇
  2013年   183篇
  2012年   166篇
  2011年   246篇
  2010年   204篇
  2009年   285篇
  2008年   247篇
  2007年   315篇
  2006年   263篇
  2005年   177篇
  2004年   169篇
  2003年   144篇
  2002年   110篇
  2001年   105篇
  2000年   81篇
  1999年   77篇
  1998年   71篇
  1997年   75篇
  1996年   59篇
  1995年   46篇
  1994年   44篇
  1993年   37篇
  1992年   28篇
  1991年   29篇
  1990年   25篇
  1989年   31篇
  1988年   21篇
  1987年   11篇
  1986年   12篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   13篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   2篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有4401条查询结果,搜索用时 15 毫秒
1.
Present study offers great prospects for the adsorption of anti-inflammatory celecoxib molecule (CXB) over the surface of zinc oxide (Zn12O12) and magnesium oxide (Mg12O12) nanoclusters in several environments by performing robust theoretical calculations. Density functional theory (DFT), time-dependent density functional theory (TDDFT) and molecular docking calculations have been extensively carried out to predict the foremost optimum site of CXB adsorption. It has been observed that the CXB molecule prefers to be adsorbed by its SO2 site on the Zn-O and Mg-O bonds of the Zn12O12 and Mg12O12 nanoclusters instead of NH2 and NH sites, where electrostatic interactions dominate over the bonding characteristics of the conjugate complexes. Furthermore, the presence of interactions between the CXB molecule and nanoclusters has also been evidenced by the UV–Vis absorption spectra and IR spectra. Molecular docking analysis has revealed that both adsorption states including CXB/Zn12O12 and CXB/Mg12O12 have good inhibitory potential against protein tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1), and human epidermal growth factor receptor 2 (HER2). Hence they might be explored as efficient TNF-α, IL-1, and HER2 inhibitors. Hence from the study, it can be anticipated that these nanoclusters can behave as an appropriate biomedical carrier for the CXB drug delivery.  相似文献   
2.
Quercus mongolica leaf (QL), an easily available biomass, was used as the precursor for preparing the hierarchical porous carbon with a large specific surface area and high adsorption capacities toward the representative dye and antibiotic. After being carbonized, QL was further chemically activated, and potassium hydroxide was proved to be a better activator than sodium hydroxide. The QL-derived porous carbon (PCQL) exhibited abundant micro- and mesopores, and the specific surface area reached 3275 m2 g?1. The performances of PCQL were evaluated through adsorbing rhodamine B (RhB) and tetracycline hydrochloride (TC) from water. Four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich-Peterson models), three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), and the thermodynamic equations were used to investigate the adsorption processes. The pseudo-second-order kinetic model and the Sips isotherm model fitted the experimental data well, which indicates that the adsorption processes were controlled by the amount of adsorption active sites on the surface of PCQL, and these adsorption active sites had different affinities for the adsorbates. The maximum adsorption capacities of PCQL toward RhB and TC were 1946.0 and 1479.6 mg g?1, respectively, based on the Sips model. The thermodynamic analysis indicates that the adsorption of PCQL toward adsorbents was spontaneous physical processes accompanied by the increasing disorder degree. The adsorption mechanism was attributed to the combination of the pore-filling, hydrogen bond, and π-π interactions. Moreover, in the fixed-bed experiments, the Yoon-Nelson model fitted the breakthrough curves well, and about 8 L wastewater containing RhB (200 mg L?1) may be effectively treated by 1.0 g of PCQL. Above results indicate that QL is a promising precursor for preparing functional porous carbon materials.  相似文献   
3.
采用基于Compass力场的分子动力学(MD)方法,研究了惰性气体氙(Xe)和氪(Kr)在塑料闪烁体(聚乙烯基对甲苯)的平整和粗糙表面的吸附和扩散行为.由惰性气体吸附曲线的均方根位移(MSD),得到了Xe/Kr气体在聚乙烯基对甲苯表面的扩散系数.研究结果表明,Kr/Xe气体均被稳定地吸附在塑料闪烁体表面,其稳定性随着温度的升高而增加,Xe分子的吸附性强于Kr分子. Kr/Xe气体在聚乙烯基对甲苯表面具有较强的扩散性能,扩散深度随着温度与厚度的增加而增加,最大为22.865?,Kr分子扩散能力强于Xe分子.基底粗糙表面增加了两种惰性气体分子的吸附和扩散.  相似文献   
4.
A cost-efficient kaolinite-cellulose/cobalt oxide green nanocomposite (Kao-Cel/Co3O4 NC) was successfully synthesized, and utilized as a promising material for removing Pb2+ and Cd2+ from aqueous solution. The fabricated nanocomposite has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy-energy dispersive X-ray, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The batch methodology was exploited for optimization of process parameters and the optimized conditions were found to be adsorbent dosage (2.0 g/L), extraction time (50 min), initial concentration (60 mg/L), and initial solution pH (6). Kao-Cel/Co3O4 NC displayed excellent adsorption properties and achieved maximum saturation capacity (Qm) of 293.68 mg Pb2+/g and 267.85 mg Cd2+/g, with an equilibration time of 50 min at 323 K. The Langmuir model best expressed the isotherm data recommending the adsorption onto energetically homogeneous NC surface, while the compatibility of kinetics data with pseudo-second-order model revealed the dependency of adsorption rate on adsorption capacity, and probable involvement of chemisorption in the rate-controlling step. Electrostatic interaction and ion exchange mechanism were responsible for the uptake of Pb2+ and Cd2+ by Kao-Cel/Co3O4 NC as demonstrated by Fourier transform infrared spectroscopy and pH studies. Thermodynamic parameters confirmed the physical, spontaneous, and endothermic sequestration processes. Real water investigation specified that the present adsorbent could be effectively used for liquid phase decontamination of Pb2+ and Cd2+. The nanocomposite exhibited high reusability, which could be utilized efficiently for five runs with sustainable results. In summary, this study portrayed the present nanocomposite as an emerging material for the adsorption of heavy metal ions particularly Pb2+ and Cd2+.  相似文献   
5.
Photocatalytic reduction of CO2 is one important approach to alleviate greenhouse gas emission and energy crisis, which has gained huge attention in the past decades. However, the lack of understanding complex reaction mechanism impedes new catalysts design. It is also very difficult to understand the mechanism by using only experimental approaches. For this concern, theoretical calculations can effectively supplement the experimental deficiency and thus play an important role. Recently theoretical calculations have been performed on adsorption, migration and reduction of CO2 molecule on the photocatalyst surface, leading to useful information that have contributed greatly to this field. This review summarizes recent advances in first-principles calculations about CO2 photoreduction over various semiconductor photocatalysts like metal oxides, sulfides and g-C3N4. The methods, models, adsorption and reaction pathways have been discussed in detail. The perspective about future investigation on the photocatalytic reduction of CO2 using first principles calculations is also presented.  相似文献   
6.
Adsorption process was simulated in this study for removal of Hg and Ni from water using nanocomposite materials. The used nanostructured material for the adsorption study was a combined MOF and layered double hydroxide, which is considered as MOF-LDH in this work. The data were obtained from resources and different machine learning models were trained. We selected three different regression models, including elastic net, decision tree, and Gradient boosting, to make regression on the small data set with two inputs and two outputs. Inputs are Ion type (Hg or Ni) and initial ion concentration in the feed solution (C0), and outputs are equilibrium concentration (Ce) and equilibrium capacity of the adsorbent (Qe) in this dataset. After tuning their hyper-parameters, final models were implemented and assessed using different metrics. In terms of the R2-score metric, all models have more than 0.97 for Ce and more than 0.88 for Qe. The Gradient Boosting has an R2-score of 0.994 for Qe. Also, considering RMSE and MAE, Gradient Boosting shows acceptable errors and best models. Finally, the optimal values with the GB model are identical to dataset optimal: (Ion = Ni, C0 = 250, Ce = 206.0). However, for Qe, it is different and is equal to (Ion = Hg, C0 = 121.12, Ce = 606.15). The results revealed that the developed methods of simulation are of high capacity in prediction of adsorption for removal of heavy metals using nanostructure materials.  相似文献   
7.
人体尿液中存在大量具有生物表面活性的物质,而这些物质与尿液中不同形貌的草酸钙微晶间的吸附关系并未得到人们广泛关注。挑选了常用的阴离子表面活性剂磺基琥珀酸钠二辛酯(AOT)作为吸附物质,研究了不同形貌的二水草酸钙(COD)晶体对AOT的吸附差异,探究草酸钙结石的形成机理。采用X射线粉末衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)表征,并通过谱图差异分析了吸附AOT前后棒状、圆钝形、花状、十字形和双锥形COD晶体的组分变化;采用Zeta电位分析仪测定吸附AOT后晶体表面的Zeta电位随AOT浓度的变化;采用比色法通过紫外可见分光光度计测定不同浓度AOT存在下晶体的吸附量变化并绘制吸附曲线。随着AOT浓度的增加,COD的吸附量逐渐上升,最后达到吸附饱和状态,各吸附曲线均呈S型。不同形貌COD对AOT的最大吸附量大小顺序为:棒状COD (41.0 mg·g-1)>圆钝形COD (37.5 mg·g-1)>花状COD (35.0 mg·g-1)>十字形COD (27.2 mg·g-1)>双锥形COD (20.9 mg·g-1)。COD晶体的比表面积越大,表面提供的活性位点也越多,越有利于表面活性剂AOT在晶体表面的吸附;富含Ca2+的(100)晶面更利于阴离子的AOT的优先吸附;此外COD晶体的内能越大,越会抑制AOT在COD表面的吸附,导致吸附量降低。吸附了AOT的COD晶体稳定性显著增加,COD向COM转变的速度明显降低。基于AOT在不同形貌的COD晶体表面的吸附特点,提出了COD晶体吸附AOT的分子模型。COD晶体对AOT的吸附与晶体形貌密切相关。容易吸附AOT的COD晶体形貌更容易粘附在带负电荷受损伤的细胞表面,加大草酸钙结石形成的风险。  相似文献   
8.
Novel SiO2-pyrazole (SiO2-PYZ) nanocomposite was introduced for the elimination of Zn(II) and Cr(III) from oil reservoir water. Characterization analysis of prepared SiO2-PYZ nanocomposite was investigated using SEM, FTIR, TGA, XRD, TEM, and BET. Studying the effects and optimization of the parameters such as retention time, pH, initial Cr(III) and Zn(II) ions concentrations, adsorbent dosage, and temperature were examined. For kinetics investigation, the pseudo-second-order (PSO) model matches the adsorption process effectively under different operating conditions. After applying two other isotherm models (Langmuir and Freundlich), the experimental data was adequately equipped with Langmuir, R2 = 1. The thermodynamic results pointed that the adsorption of Zn(II) and Cr(III) ions was spontaneous, endothermic, and physisorption reaction. At pH 12, the influence of more than one ion, such as Ca(II) and Na(I), was checked, and the results revealed that this conjugate substance was highly selective to Cr(III). After washing with water in multiple cycles, the adsorbed material was regenerated with 0.1 M HCl and subsequently reused without deterioration in its case cavities. Interestingly, SiO2-PYZ was highly effective against sulfate-reducing bacteria (SRB) in the petroleum field.  相似文献   
9.
This work focuses on the removal of lead from contaminated aqueous solutions using unripe papaya peel based bio-adsorbents (PP). Response surface methodology (RSM) based on Box-Behnken design (BBD) is employed to determine the independent variables. Optimum conditions proved to be 96.5 mg/L of initial lead concentration in solution, at pH 4 of aqueous solution, having adsorbent dosage of 14.6 g/L and contact time (3 h) which subsequently yielded the predicted and actual lead removal efficiencies of 100% and 97.54%, respectively. Adsorption isotherms and kinetics of lead adsorption using unripe papaya peel followed the Freundlich and pseudo-second-order models, indicating that the process of chemisorption occurred. The magnitude of the adsorption capacity of the pseudo-second-order model (qe,cal = 6.25 mg/g) was found to be comparable to the value obtained experimentally (qe,cal = 6.45 mg/g). Thermodynamic parameters were calculated in order to identify the phenomena of adsorption. The values of Δ and Δ are found to be 13.61 J/mol and 54.30 J/mol?K, respectively. The characteristics of unripe papaya peel bio-adsorbents, analyzed via SEM/EDX, FTIR and BET, are also presented. Thus, the O-H and C-O functional groups contained in the unripe papaya peel waste were found to effectively adsorb lead from the aqueous medium. The average pore diameters, average pore volumes and average surface area of bio-adsorbents prepared from unripe papaya peel waste proved to be 9.046 nm, 0.0012 cm3/g and 0.755 m2/g, respectively.  相似文献   
10.
Pyrolysis of rice straw (RS), a popular method for producing biochar, effectively treats heavy metal(loid)-contaminated RS. Here, we carried out this process at different temperatures and investigated the deportment of heavy metal(loid)s and the property evolution of biochars. Also, the optimal pyrolysis temperature for Pb adsorption and immobilization was studied. We observed that increasing the temperature could volatilize the heavy metal(loid)s. Cd was the most volatile metal therein, followed by As, while Ni, Cu, and Pb were relatively refractory. More than 75% of the remaining heavy metal(loid)s were non-exchangeable fractions at 700 °C, significantly reducing the environmental risk during subsequent application. Meanwhile, higher pyrolysis temperature resulted in higher pH values, higher surface areas, and stronger Pb adsorption capacity of RS biochars. The maximum adsorption capacity (Qm) of biochars was in the order of BC300 (77.2 mg·g?1) < BC500 (137.2 mg·g?1) < BC700 (222.6 mg·g?1). Besides, high-temperature biochar could significantly reduce the vertical Pb migration. And BC700 increased the fraction of residual Pb from 39.7% to 44.0% in the soil under the acid rain leaching condition. Therefore, we propose that the heavy metal(loid)-contaminated RS biochar produced at 700 °C might be more suitable for the remediation of soil heavily polluted in the Pb-smelting area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号