首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2461篇
  免费   518篇
  国内免费   127篇
化学   497篇
晶体学   17篇
力学   515篇
综合类   41篇
数学   253篇
物理学   1783篇
  2024年   3篇
  2023年   53篇
  2022年   83篇
  2021年   125篇
  2020年   121篇
  2019年   74篇
  2018年   90篇
  2017年   116篇
  2016年   116篇
  2015年   85篇
  2014年   216篇
  2013年   183篇
  2012年   115篇
  2011年   199篇
  2010年   163篇
  2009年   151篇
  2008年   170篇
  2007年   140篇
  2006年   148篇
  2005年   105篇
  2004年   96篇
  2003年   93篇
  2002年   68篇
  2001年   56篇
  2000年   55篇
  1999年   28篇
  1998年   33篇
  1997年   33篇
  1996年   29篇
  1995年   35篇
  1994年   21篇
  1993年   21篇
  1992年   11篇
  1991年   10篇
  1990年   12篇
  1989年   5篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   5篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有3106条查询结果,搜索用时 16 毫秒
1.
The acoustic radiation force resulting from acoustic waves have been extensively studied for the contact-free generation of organized patterning arrays. The precise arrangement of microscopic objects clustered at the pressure nodes is critical to the development of functional structures and patterned surfaces. However, the size of the clusters is restricted by the saturation limit of the acoustic nodes. Here, we present a bulk acoustic wave (BAW) platform, which employs a two-dimensional acoustic wave to propel particles of various sizes. Experimentally, when particles are large, significant acoustic energy is scattered and partly absorbed by the matched layers in front of the sensors. The acoustic radiation force from a convergent acoustic pressure field agglomerates the large polystyrene (PS) particles towards the central region instead of the pressure nodes. The parametric analysis has been performed to assess the transition in the particles from clustering at the organized nodal arrays to agglomerating in the central region, which is a function of particle size, particle concentration, and load voltage. Statistically, the particles can agglomerate with a cluster ratio greater than 70%, and this ratio can be improved by increasing the load power/voltage supplied to the transducers. With its ability to perform biocompatible, label-free, and contact-free self-assembly, this concept offers a new possibility in the fabrication of colloidal layers, the recreation of tissue microstructure, the development of organoid spheroid cultures, the migration of microorganisms, and the assembly of bioprinting materials.  相似文献   
2.
Suspension culture is an essential large-scale cell culture technique for biopharmaceutical development and regenerative medicine. To transition from monolayer culture on the culture surface of a flask to suspension culture in a bioreactor, a pre-specified cell number must first be reached. During this period of preparation for suspension culture, static suspension culture in a flask is generally performed because the medium volume is not large enough to use a paddle to circulate the medium. However, drawbacks to this static method include cell sedimentation, leading to high cell density near the bottom and resulting in oxygen and nutrient deficiencies. Here, we propose a suspension culture method with acoustic streaming induced by ultrasonic waves in a T-flask to create a more homogeneous distribution of oxygen, nutrients, and waste products during the preparation period preceding large-scale suspension culture in a bioreactor. To demonstrate the performance of the ultrasonic method, Chinese hamster ovary cells were cultured for 72 h. Results showed that, on average, the cell proliferation was improved by 40% compared with the static method. Thus, the culture time required to achieve a 1000-fold increase could be reduced by 32 h (a 14% reduction) compared with the static method. Furthermore, the ultrasonic irradiation did not compromise the metabolic activity of the cells cultured using the ultrasonic method. These results demonstrate the effectiveness of the ultrasonic method for accelerating the transition to large-scale suspension culture.  相似文献   
3.
The effects of air sparging (0–16 L min−1) and mechanical mixing (0–400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased → increased exponentially → decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min−1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.  相似文献   
4.
在超声波流量计测量技术中, 雷诺修正系数相关的研究对于提高计量精度有重要作用. 为研究矩形流道的雷诺修正系数与雷诺数的关系, 对矩形流道在常温常压流量较小情况下进行仿真, 结果发现: 矩形流道层流状态下的雷诺修正系数与雷诺数呈线性相关. 保持压强、体积流量不变, 在不同温度下进行仿真及拟合, 结果表明: 在不同温度下雷诺修正系数与雷诺数的线性关系依然满足. 在上述实验基础上, 对矩形流道湍流状态下的雷诺修正系数与雷诺数关系进行研究, 通过改变温度、压强和体积流量进行仿真及拟合发现, 矩形流道湍流状态下雷诺修正系数与雷诺数呈非线性相关.  相似文献   
5.
It is shown that a liquid slug in gas–liquid segmented flow in microchannels can act as an acoustic resonator to disperse large amounts of small liquid droplets, commonly referred to as atomization, into the gas phase. We investigate the principles of acoustic resonance within a liquid slug through experimental analysis and numerical simulation. A mechanism of atomization in the confined channels and a hypothesis based on high-speed image analysis that links acoustic resonance within a liquid slug with the observed atomization is proposed. The observed phenomenon provides a novel source of confined micro sprays and could be an avenue, amongst others, to overcome mass transfer limitations for gas–liquid processes in flow.  相似文献   
6.
With the emergence of wireless networks, cooperation for secrecy is recognized as an attractive way to establish secure communications. Departing from cryptographic techniques, secrecy can be provided by exploiting the wireless channel characteristics; that is, some error-correcting codes besides reliability have been shown to achieve information-theoretic security. In this paper, we propose a polar-coding-based technique for the primitive relay wiretap channel and show that this technique is suitable to provide information-theoretic security. Specifically, we integrate at the relay an additional functionality, which allows it to smartly decide whether it will cooperate or not based on the decoding detector result. In the case of cooperation, the relay operates in a decode-and-forward mode and assists the communication by transmitting a complementary message to the destination in order to correctly decode the initial source’s message. Otherwise, the communication is completed with direct transmission from source to the destination. Finally, we first prove that the proposed encoding scheme achieves weak secrecy, then, in order to overcome the obstacle of misaligned bits, we implement a double-chaining construction, which achieves strong secrecy.  相似文献   
7.
为了改善GaN HEMT的自热效应,集成高热导率的金刚石衬底有助于增强器件有源区的热量耗散。然而,化学气相淀积(CVD)生长的多晶金刚石(PCD)具有柱状晶粒结构,导致了各向异性的材料热导率,且其热导率值与生长厚度有关。为此,通过建模金刚石生长过程中晶粒尺寸的演变过程,计算了金刚石沿面内和截面方向的热导率。基于该PCD热导率模型,利用计入材料非线性热导率的GaN器件热阻解析模型,计算得到了GaN HEMT沟道温度的波动范围,并分析了其与器件结构(栅长、栅宽、栅间距、衬底厚度)和功耗的依赖关系。最后,通过与有限元(FEM)仿真结果对比,分区域提取了GaN HEMT器件中PCD衬底的有效热导率,分别为260~310 W/(m·K)和1 250~1 450 W/(m·K)。本文的计算为预测金刚石衬底上GaN HEMT器件的沟道温度提供了快速、有效的方法。  相似文献   
8.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   
9.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   
10.
Simultaneous two-way classical and quantum (STCQ) communication combines both continuous classical coherent optical communication and continuous-variable quantum key distribution (CV-QKD), which eliminates all detection-related imperfections by being measurement-device-independent (MDI). In this paper, we propose a protocol relying on STCQ communication on the oceanic quantum channel, in which the superposition-modulation-based coherent states depend on the information bits of both the secret key and the classical communication ciphertext. We analyse the encoding combination in classical communication and consider the probability distribution transmittance under seawater turbulence with various interference factors. Our numerical simulations of various practical scenarios demonstrate that the proposed protocol can simultaneously enable two-way classical communication and CV-MDI QKD with just a slight performance degradation transmission distance compared to the original CV-MDI QKD scheme. Moreover, the asymmetric situation outperforms the symmetric case in terms of transmission distance and optical modulation variance. We further take into consideration the impact of finite-size effects to illustrate the applicability of the proposed scheme in practical scenarios. The results show the feasibility of the underwater STCQ scheme, which contributes toward developing a global quantum communication network in free space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号