首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9887篇
  免费   4099篇
  国内免费   5593篇
化学   8182篇
晶体学   767篇
力学   1236篇
综合类   282篇
数学   1095篇
物理学   8017篇
  2024年   55篇
  2023年   435篇
  2022年   569篇
  2021年   448篇
  2020年   498篇
  2019年   633篇
  2018年   459篇
  2017年   614篇
  2016年   584篇
  2015年   572篇
  2014年   1216篇
  2013年   1070篇
  2012年   910篇
  2011年   858篇
  2010年   788篇
  2009年   876篇
  2008年   908篇
  2007年   752篇
  2006年   845篇
  2005年   721篇
  2004年   781篇
  2003年   673篇
  2002年   587篇
  2001年   630篇
  2000年   415篇
  1999年   385篇
  1998年   301篇
  1997年   325篇
  1996年   273篇
  1995年   268篇
  1994年   230篇
  1993年   162篇
  1992年   178篇
  1991年   162篇
  1990年   149篇
  1989年   124篇
  1988年   42篇
  1987年   24篇
  1986年   20篇
  1985年   20篇
  1984年   7篇
  1983年   4篇
  1982年   7篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《低温与超导》2021,49(4):109-114
基于CFD(Computational Fluid Dynamics)的仿真技术,开展对PCB(Printed Circuit Board)板级热仿真。通过将PCB的器件布局及覆铜层布线模型导入仿真软件,建立板级详细仿真模型,并与常用的覆铜层等效导热系数的仿真方法进行对比。两种仿真方法和试验分析的结果对比表明,板级详细热力学仿真与试验结果的差值在5%以内,其能够准确分析PCB各覆铜层及器件温度分布。  相似文献   
2.
数学均匀化方法是计算周期复合材料结构的有效方法之一,单胞边界条件施加的合理性直接决定了影响函数控制方程的计算效率和精度,进而影响均匀化弹性参数和摄动位移的计算精度.本文首先将单胞影响函数作为虚拟位移处理,给出了单胞在结构中真实的边界条件,结果表明,四边固支适合作为二维结构单胞边界条件;其次,针对二维结构提出了超单胞周期边界条件,有效提高了影响函数的计算精度,并使用与虚拟位移相对应的虚拟势能泛函验证超单胞周期边界条件的有效性;最后,利用数值分析验证多尺度渐进展开方法的计算精度,强调了二阶摄动的必要性.  相似文献   
3.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算。结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小。本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.232 eV、0.198 eV,费米能级均向低能区移动进入价带。由于Sc的3d态电子和Ce的4f态电子的影响,Sc、Ce掺杂的CrSi2在导带下方出现了杂质能级。掺杂后的CrSi2介电函数虚部第一介电峰峰值增加且向低能方向移动,说明Sc、Ce掺杂使得CrSi2在低能区的光跃迁强度增强,Sc-Ce共掺时更明显。Sc、Ce掺杂的CrSi2吸收边在低能方向发生红移,在能量大于21.6 eV特别是在位于31.3 eV的较高能量附近,本征CrSi2几乎不吸收光子,Sc单掺和Sc-Ce共掺CrSi2吸收光子的能力有所增强,并在E=31.3 eV附近形成了第二吸收峰。说明掺杂Sc、Ce改善了CrSi2对红外和较高能区光子的吸收。在小于3.91 eV的低能区掺杂后的CrSi2光电导率增加。在20.01 eV<E<34.21 eV时,本征CrSi2光电导率为零,但Sc、Ce掺杂后的体系不为零,掺杂拓宽了CrSi2的光响应范围。研究结果为CrSi2基光电器件的应用与设计提供了理论依据。  相似文献   
4.
单指标面板模型已广泛应用于各学科领域的研究中,其估计方法较为丰富,然而鲜有估计方法将个体内的相关性考虑在内.基于此,本文研究了一类个体内存在相关性的固定效应部分线性单指标面板模型,采用惩罚二次推断函数法和LSDV法相结合的方法对模型进行估计,证明了所得估计量的一致性和渐近正态性.Monte Carlo模拟结果显示其具有优良的有限样本表现,并将该估计技术应用于实际数据分析中.  相似文献   
5.
六方氮化硼(hBN)具有跟石墨烯类似的层状结构和晶格参数,研究发现hBN薄膜具有良好的热传导、电绝缘、光学和力学等性能。本文从理论上研究了hBN薄膜对石墨烯-碳化硅(G/S)结构的近场热辐射的影响。研究发现在红外频段.hBN薄膜在低频率区和高频率区会增强G/S结构的近场热辐射,经计算在G/S结构中加入厚度为10 nm的hBN薄膜时获得的辐射热流是同物理条件下G/S结构的1.5倍;而在中频率区hBN薄膜的厚度阻碍了石墨烯表面等离激元和碳化硅表面声子极化激元的耦合,使得近场热辐射热流随hBN薄膜厚度增加而逐渐减弱。本研究的结果可为下一步实验与应用中对hBN薄膜厚度的选择提供理论基础。  相似文献   
6.
混合结构的石墨烯/半导体光电晶体管因其超高的响应度而备受关注。然而,该类光电晶体管通过源-漏电极测试得到的比探测率(D*)容易受到1/f噪声的限制。本文制备了混合结构的石墨烯/GaAs光电探测器,通过源-栅电极测得D*大约为1.82×1011 Jones,与通过源-漏电极测量相比,D*提高了约500倍。这可归因于界面上肖特基势垒对载流子俘获和释放过程的屏蔽作用。此外,探测器的上升时间和下降时间分别是4 ms和37 ms,响应速度相应地提高了2个数量级。该工作为制备高比探测率和高速的光电探测器提供了一种新的思路。  相似文献   
7.
针对机油滤清器工作工况下进出口压差、机油滤层强度及导流桩高度等问题, 通过试验测试与仿真相结合, 对滤清器初步设计进行了评估及优化, 以确保滤清器在工作工况下进出口压降及滤层强度能满足要求. 首先进行滤层性能试验, 得到滤层的惯性阻力系数和黏性阻力系数; 再通过滤层多孔介质CFD分析, 对滤清器进出口压降进行分析计算. 结果表明: 在-18℃、25℃和70℃的工况下, 进出口压降都小于10kPa, 满足相关要求. 针对滤层的最大主应力超过其抗拉强度的问题, 通过CAE仿真分析, 优化滤层与导流桩间隙, 将滤层最大主应力由110.1MPa降至36.99MPa, 小于其抗拉强度42.8MPa.  相似文献   
8.
《低温与超导》2021,49(7):1-5,66
采用自主研发的无氟高分子辅助金属有机物沉积(FF-PAMOD)法在LaAlO_3单晶基底上制备微量Co~(3+)掺杂的GdBCO薄膜,研究不同掺杂量对薄膜结构和超导性能的影响。结果表明,掺杂量x为0.001的薄膜(GdBa_2Cu_(3-x)Co_xO_(7-z))具有更好的c轴织构和更加平整致密的表面微结构,以及在77 K自场具有最高的临界电流密度(J_c)。此外,与纯样相比,该掺杂样品(x=0.001)在磁场下显示出更高的J_c(77 K, 30 K),这可能是Co~(3+)掺杂对薄膜外延生长的促进和掺杂引入的钉扎中心共同作用的结果。  相似文献   
9.
运用密度泛函理论和非平衡格林函数结合的方法,研究电极区N掺杂对扶手椅型石墨烯纳米带电子输运特性的影响.结果表明,与本征扶手椅型石墨烯纳米带电流-电压曲线相比,宽度为7的石墨烯纳米带电流-电压曲线表现出明显的不对称性,其中心N掺杂表现强烈的整流特性,整流系数达到102数量级,且将N原子从电极区中心位置移动到边缘,整流特性减弱.研究结果表明宽度为7的扶手椅型石墨烯纳米带出现强整流现象的原因主要是负向偏压下能量窗内没有透射峰引起的,该研究结果对将来石墨烯整流器件的设计具有重要的意义.  相似文献   
10.
铂纳米颗粒在汽车行业中被广泛用作汽车尾气催化剂。随着铂纳米颗粒在工业生产中的广泛应用,它在环境中广泛分布并可能从植物累积进入食物链中。因此,建立一种在农产品中的定量分析方法是至关重要的。以酶消解的前处理方法结合单颗粒-电感耦合等离子体质谱法(Single particle ICP-MS,SP-ICP-MS)测定农产品中纳米铂颗粒(PtNPs)粒径分布及颗粒数量浓度。通过优化前处理提取条件,当Macerozyme R-10酶为10 mg、柠檬酸缓冲溶液浓度为5 mmol/L、提取时间36 h时,农产品中PtNPs提取效果较高。PtNPs粒径检出限为20 nm,颗粒浓度检出限为5×105 particle/L,铂颗粒浓度回收率在(81±3)%~(91±4)%,加标后平均粒径(41±3)~(47±2)nm,与50 nm PtNPs标准溶液粒径接近。方法操作简单、检出限低、准确度高,适用于农产品中PtNPs定量分析,为客观评价农产品铂纳米毒性效应提供可靠的分析技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号