首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5388篇
  免费   1772篇
  国内免费   3617篇
化学   6080篇
晶体学   211篇
力学   416篇
综合类   102篇
数学   52篇
物理学   3916篇
  2024年   19篇
  2023年   299篇
  2022年   321篇
  2021年   305篇
  2020年   274篇
  2019年   285篇
  2018年   189篇
  2017年   231篇
  2016年   261篇
  2015年   215篇
  2014年   562篇
  2013年   542篇
  2012年   410篇
  2011年   417篇
  2010年   369篇
  2009年   392篇
  2008年   458篇
  2007年   381篇
  2006年   436篇
  2005年   447篇
  2004年   436篇
  2003年   361篇
  2002年   350篇
  2001年   385篇
  2000年   290篇
  1999年   240篇
  1998年   204篇
  1997年   203篇
  1996年   201篇
  1995年   153篇
  1994年   182篇
  1993年   199篇
  1992年   153篇
  1991年   148篇
  1990年   141篇
  1989年   153篇
  1988年   43篇
  1987年   35篇
  1986年   33篇
  1985年   22篇
  1984年   13篇
  1983年   13篇
  1982年   4篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
密排六方晶体结构金属中可同时启动的滑移系少,孪生成为密排六方金属中重要的塑性变形形式.由于密排六方金属复杂的晶体结构,均匀切变不能保证所有晶格点都能与基体形成对称的晶体结构,因此密排六方金属的孪生通常为滑移和原子重组(shuffle)机制相结合.本文以密排六方金属中常见的{101 ̅2}、{101 ̅1}、{112 ̅2}及{102 ̅1}孪生为例,阐述不同类型孪生过程中的孪晶位错机制.分析表明,由于原子重组机制的参与,密排六方金属的孪生可以通过不同形式的孪晶位错实现.以上四种密排六方金属孪晶中,只有{112 ̅2}孪生中的一层孪晶位错是纯剪切机制,其余的孪生机制都需要原子重组的参与.孪生机制可以大致分为滑移主导、原子重组主导以及滑移-重组相结合的机制.当孪生类型确定时,即第一不畸变面(孪晶面)k_1(和孪晶剪切方向η_1)确定时,不同孪晶位错机制对应的孪晶剪切大小和方向均不同,第二不畸变面k_2和共轭剪切方向η_2也不相同,所导致孪晶的拉压性质也不同.不同剪切方向和大小的孪晶位错机制有可能在不同应力和温度条件下被激活,从而作为密排六方金属塑性的重要来源.  相似文献   
2.
利用水热法和直接沉淀法, 设计合成了5例由过渡金属(TM)-联咪唑配阳离子与Dawson型钨磷酸阴离子构成的多金属氧酸盐(POM)基有机-无机杂化化合物[Ni(H2biim)3]4[Ni(H2biim)2(P2W18O62)2]·2H2O(1), [CoIII(H2biim)3]2[P2W18O62]·8H2O(2), [Cu(H2biim)2]3[P2W18O62]·4H2O(3), [CoII(H2biim)3]2H2[P2W18O62]·9H2O(4)和 [Ni(H2biim)3]3[P2W18O62]·2H2O(5); 并利用X射线单晶衍射分析(SC-XRD)、 红外光谱(IR)和热重-差热分析 (TG-DTA)等对其进行了表征. 化合物1~5作为载体用于固定辣根过氧化物酶(HRP)时, 显示出了较高的酶固定化能力. 另外, 利用圆二色光谱(CD)和激光扫描共聚焦显微镜(LSCM)等方法评价了固定化酶HRP/1~HRP/5的重复使用性、 储存稳定性和检测过氧化氢(H2O2)的性能. 由于该类POMs与HRP间存在强的相互作用, 利用简单的物理吸附法即可实现POMs对HRP的固载. POMs对酶的固定不但提高了HRP对使用及储存环境的耐受性, 同时也拓展了POMs在酶固定化领域的应用.  相似文献   
3.
基于半刚性的配体3'',5''-di (1H-1,2,4-triazol-1-yl)-(1,1''-biphenyl)-3,5-dicarboxylic acid (H2DTBDA)和硝酸钴制备了一个柔性超微孔的金属有机骨架{[Co (DTBDA)]·4H2O}n(FJI-H35),并对该材料的结构进行了系统的表征。FJI-H35活化以后可以发生自适应的结构转变,使得孔径从0.43 nm收缩到0.37 nm。气体吸附测试表明FJI-H35可以从氮气和甲烷中选择性捕获二氧化碳,具有很高的吸附选择性和相对低的吸附焓。突破实验进一步证实FJI-H35可以从二氧化碳/氮气(15∶85,V/V)和二氧化碳/甲烷(50∶50,V/V)混合气中高效选择性捕获二氧化碳。  相似文献   
4.
5.
采用纳米多孔膜可以实现新型的具有极高热流密度的薄液膜沸腾相变传热。在薄液膜沸腾的基础研究中,通过在纳米多孔膜表面加工纳米级别厚度的铂镀层实现加热和测温。通过扫描电镜观察,发现实验样品残骸表面有“河流”状形貌形成,结合元素分析推断铂镀层局部发生热熔。本文对铂镀层进行简化并建立电网络模型,计算并分析了铂镀层局部厚度不均对整体发热极限及熔毁失效的影响。分析结果表明,镀层厚度的不均,将会使镀层在达到极限热流密度后,极易出现“河流”状熔毁,使镀层永久失效;而厚度更加均匀的铂镀层,有助于获得更高的极限热流密度。  相似文献   
6.
二维过渡金属硫化物(TMDC)材料因为独特的激子效应和材料学性质,在太阳电池、光催化、传感器、柔性电子器件等领域得到广泛的应用。层数对其性质有显著的调控作用,自动检测识别所需层数的样品是其从实验室走进半导体制造工业的重要技术需求。本文结合反射高光谱成像技术与图像处理算法,发展了一种二维TMDC薄层样品的显微成像自动检测技术。基于自主搭建的反射高光谱成像系统,对制备的不同层数TMDC标准样品进行了光学对比度的系统研究,阐明了层数的差分反射光谱机理,提出了可靠的层数判定方法。基于传统边缘检测技术优化设计了一套图像处理算法,实现了TMDC样品的图像检测及层数鉴定。本文方法具有普遍性、实用性,结合自动对焦的扫描控制,能够实现大规模的自动化样品检测,这也为其他表面目标的显微识别和检测提供了新的灵感和参考。  相似文献   
7.
金属富勒烯嵌套于纳米环内形成主客体系, 二者产生的主客体作用可诱导内部金属团簇的取向, 影响分子的电子结构等性质. 本文基于密度泛函理论(DFT)计算, 对碳纳米环[12]CPP(CPP=环苯撑, 主体分子)与金属富勒烯Sc3C2@C80(客体分子)形成的主客体配合物的结构和性质进行了研究. 计算结果表明, 在最稳定构型中, [12]CPP呈现椭圆形, Sc3C2@C80与[12]CPP的质心不再重合. Sc3C2@C80在[12]CPP内旋转对构型总体能量影响仅为13.51 kJ/mol. [12]CPP向Sc3C2@C80转移了0.03 e, 主客体分子之间存在弱相互作用. 对二者相互作用的分析结果表明, 色散作用在弱相互作用中占主导地位.  相似文献   
8.
催化剂由于具有降低电化学过电位和改善动力学条件的能力,在各种储能器件中起着至关重要的作用.在锂离子电池中,首圈放电过程中形成的固体电解质界面膜,通常被认为是一旦形成就稳定不分解的.而在过渡金属的催化下,这种电解质分解衍生的聚合物凝胶状膜(PGF)能可逆地形成和分解.这种过渡金属催化机制可以进行催化储锂,即形成的PGF具有存储锂离子的能力,可提供额外的储锂容量,并且形成的PGF对枝晶的穿刺起到保护作用,提高锂离子电池的安全性.然而,由于锂离子电池中非常复杂的反应环境,常规测试手段很难对过渡金属的催化作用进行精准的表征.高精度测试技术的缺乏,限制了人们对催化机理的深入理解.过渡金属的磁性对价态和电子态密度高度敏感,所以在过渡金属催化过程中发生的电子转移会使其磁性发生相应的变化,这将催化与磁性紧密的联系在一起,使实时磁性测试成为研究过渡金属催化机理的有力工具.利用实时磁性测试可以精确地检测到催化过程中由电子转移产生的磁响应信号,从而对催化机理进行系统深入地研究.本文采用高精度的实时磁性测试技术对磁控溅射制备的氧化钴电极进行了测试,以得到关于锂离子电池中过渡金属催化的直接实验证据.磁控溅射制备的薄膜电极,没有导电添加剂和粘结剂的影响,尽可能地避免了其他因素对锂离子电池电化学反应过程的影响,更有利于对催化机理的深入研究.借助高精度的实时磁性测试,本文成功地检测到了在Co的催化作用下PGF的可逆形成和分解所引起的磁响应信号.此外,在不同的溅射气氛和溅射时间下,制备了一系列CoO/Co薄膜,系统研究了Co含量和薄膜厚度对催化性能的影响,得到了关于过渡族金属催化的更系统、更深入的认识.实时磁性测试结果表明,Co含量增加会使Co的催化作用增强,使催化过程中产生的磁响应信号变得更强.另外,电极厚度的降低可以提高催化储锂在电化学储锂中的占比,使得催化反应的磁响应信号变得更加明显.本文强调了实时磁性测试在催化领域研究中的重要性,加深了对过渡金属催化机理的认识,为设计基于催化储能的新型储能器件提供了关键的指导作用.  相似文献   
9.
本文主要概述了近年来核酸工具酶辅助的基于金属稳定同位素标记的电感耦合等离子体质谱(ICP-MS)检测方法在生物分析中的发展和应用,简要介绍了该方法在蛋白质、核酸及一些生物小分子检测中的应用。最后对核酸工具酶辅助的基于金属稳定同位素标记的电感耦合等离子体质谱(ICP-MS)检测方法的发展前景做了展望。  相似文献   
10.
张亚萍  徐继香  周洁  王磊 《催化学报》2022,43(4):971-1000
在光催化过程中,光催化剂被太阳能激发产生光生电子和空穴,来实现环境净化或能量转换,是应对全球变暖和能源短缺的有效途径之一.然而,光催化技术面临的主要瓶颈问题是光生载流子的低分离效率和高反应能垒.而催化剂本身的特性对这一点起到了决定性的作用.因此,催化剂的合理设计和改性是提高光催化效率的关键.金属有机框架(MOFs)是一类由金属节点和有机配体组成的新型结晶多孔材料.基于结构多样性、超高比表面积、形状和尺寸可调的纳米孔或纳米通道等优异的特性,MOFs基材料在光催化领域引起了广泛关注.然而,MOFs的主要问题之一是低导电性和稳定性,这限制了其更广泛应用.正是由于MOFs的不稳定性,其可以作为牺牲模板制备纳米材料.由MOFs衍生的纳米材料继承了MOFs的优异特性,同时避免了MOFs较差的导电性和稳定性的问题.并且可以通过选择特定的金属节点和有机配体对MOFs衍生的纳米材料进行调控,从而实现光催化剂的多功能性.因此,MOFs衍生物在光催化领域展现出更广阔的应用前景.而且MOFs衍生物不仅可以作为半导体光催化剂,还可以作为光催化析氢、CO2还原、污染物降解等反应的助催化剂.本文重点介绍MOFs衍生物在光催化领域的多功能应用.从MOFs衍生物的制备、修饰和应用等方面对近年来的研究进行了分析和总结.最后,对MOFs衍生物应用于光催化领域的挑战进行了分析,并对未来发展和机遇进行了展望,以期为该领域的进一步研究提供更多参考,并带来新的启示.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号