首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   19篇
  国内免费   101篇
化学   137篇
晶体学   11篇
力学   3篇
综合类   2篇
数学   1篇
物理学   33篇
  2023年   4篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   10篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1993年   9篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
1.
采用改进高温热分解法合成了Cd2+掺杂NaLuF4∶Yb,Er纳米晶体,研究了Cd2+对晶相形成和发光强度的影响,采用CASTEP计算不同掺杂浓度下β-NaLuF4∶Yb,Er的形成能.在掺杂浓度为6mol;时合成的纳米晶荧光强度最强,其相较于未掺杂时增加了2.6倍,此时平均尺寸为23 nm左右.随后通过控制添加合适比例和含量的分散剂,解决了晶体易团聚的问题,得到了平均尺寸为18 nm的结晶度高、分散性好的上转换纳米晶.通过二氧化硅壳层的包覆,降低了Cd2泄露引起的毒性反应,表明在浓度较低时呈现出低毒性,满足了上转换纳米晶在医用材料领域应用的要求.  相似文献   
2.
耐磨性能是超高分子量聚乙烯(UHMWPE)制品的重要评价指标,其增强机理为在摩擦表面阻止分子链滑移和脱落.改善耐磨性在本质上是形成有效的分子链整体网络.对于人工关节用交联UHMWPE模塑料,辐照改性会残存有自由基,容易造成氧化降解,破坏长期耐久稳定性.发展能够替代辐照交联的新方法,具有重要的现实意义.在本文中,我们选用不同分子量(Mw)的原料树脂,通过改变结晶热历史实现结晶度(Xc)大范围调节,以及改变γ辐照剂量调整交联密度(Vd).测定了各种样品的体积磨损率,建立Xc、Vd、Mw与磨损率的关系.研究发现,随着Xc、Vd、Mw增加,磨损率线性降低;更为重要的是,对于所有分子量的UHMWPE,通过增加结晶度能够使磨损率降至比传统辐照交联方法更低的水平.利用高结晶度改善耐磨性,由于不会引起活性自由基,从根本上消除了氧化风险,具有明显的优势.研究结果为发展新型的高耐磨人工关节用UHMWPE模塑料提...  相似文献   
3.
采用恒温加热和双扩散两种脱除溶剂的方式制备PAN大分子薄膜,运用X射线衍射仪、傅里叶红外、紫外分光光度计等进行表征,研究凝固浴中沉淀剂极性对PAN大分子结晶度的影响。结果表明在凝固相分离过程中,沉淀剂对PAN大分子结晶度的影响是通过与氰基发生亲和作用实现的。沉淀剂极性越大,与PAN大分子之间亲合作用越强,对分子链的束缚越明显,使PAN分子调节自身构象变得困难,阻碍结晶的生长。电解质的加入能够弱化这种亲合作用,提高PAN的结晶度。  相似文献   
4.
以甲烷火焰为干燥介质,将3种不同性质的磷酸钙料浆利用火焰-雾化干燥法制备出不同形态和性能的羟基磷灰石(HA)微球。对比分析了料浆成分、温度、结晶程度等参数对所得HA微球形貌、相组成、结晶度、比表面积以及孔隙分布等的影响。结果表明,料浆中的氨水在雾化干燥过程中会聚集突释,得到具有“爆破状”开口的形态的HA微球。低温并且结晶程度较低的磷酸钙料浆经过火焰-雾化快速干燥后,得到结构松散、结晶度较低、比表面积及孔体积较大的HA微球,说明料浆的性质将会直接影响火焰-雾化干燥后HA微球的特性。  相似文献   
5.
菱镁矿风化石与叶腊石合成堇青石的结构表征   总被引:5,自引:0,他引:5  
采用菱镁矿风化石、叶腊石、二氧化硅微粉为主要原料,研究分析烧成温度对合成堇青石结晶度、晶粒尺寸、晶相组成和显微结构来确定适宜的合成温度。用X′ Pert plus软件对X射线衍射图进行拟合,分析试样的结晶度,用半定量(semi-quantification)法对试样结晶相中晶相组成进行计算,用Scherrer公式计算试样中堇青石、方石英晶粒的粒径大小。结果表明:采用菱镁矿风化石与叶腊石为原料合成堇青石,当温度由1 350 ℃增加到1 400 ℃,试样的结晶度增加,堇青石晶粒尺寸和堇青石相量增加,在1 400 ℃时,试样结晶度最高,晶粒尺寸最大。晶相组成中堇青石相占67%,方石英相占33%。当温度大于1 400 ℃,试样结晶度降低,堇青石和方石英晶粒尺寸减小,当温度在1 500 ℃时,堇青石相消失,促进了方石英相析出。采用菱镁矿风化石与叶腊石为原料合成堇青石的最佳烧成温度为1 400 ℃。  相似文献   
6.
合成水凝胶是由水溶性单体聚合得到的轻度交联的高分子柔顺链网络 .高分子交联网络与水之间的相互作用决定着水凝胶的物理化学性质[1,2 ] .水凝胶常应用于生物医学材料和生物传感器等方面 .如接触眼镜的材料就常用甲基丙烯酸 -β-羟乙酯和聚乙烯醇 (PVA)为主要成分的水凝胶 ,所以对其摩擦性质的研究会丰富对生物医用材料的认识 .关于水凝胶的摩擦性质的研究 ,除 Osada等[3] 研究了聚乙烯醇及一些天然水凝胶在几牛顿到几十牛顿的负载下的摩擦行为外 ,尚少报道 .PVA水凝胶的结晶度对其性能影响甚大 ,但他们没有涉及结晶度与 PVA水凝胶的摩…  相似文献   
7.
六方氮化硼的振动光谱与立方氮化硼的合成   总被引:5,自引:2,他引:3       下载免费PDF全文
 以X射线衍射分析作参比,分析了高度三维有序到近乱层结构的9种六方氮化硼的红外和拉曼光谱,并进行了立方氮化硼的高温高压合成。光谱分析表明,随着晶性的降低,六方氮化硼的低频红外吸收峰的位置及拉曼谱线等基本振动光谱发生明显的特征性的变化,并伴随出现各自不同的次级光谱结构。合成结果表明,在触媒作用下,立方氮化硼的形成需要六方氮化硼原料有一定的结晶度,但立方氮化硼合成效果与六方氮化硼结晶度并非是简单的单调关系。对振动光谱和合成试验的结果进行了讨论。  相似文献   
8.
层状复合氢氧化物对乙酰苯甲酸的负载与体外释放   总被引:2,自引:0,他引:2  
共沉淀-微波晶化法合成层状复合氢氧化物(LDH)后, 用不同方式将乙酰苯甲酸(ASP)组装到LDH层间制成载药体LDH-ASP, 通过对合成及药物释放前后的液相分析与固相表征数据研究了LDH对ASP的负载及载药体LDH-ASP在磷酸盐介质的溶释现象. 结果表明: LDH层间通道是负载、贮存及控制药物释放的微观基础; 载体选择、药物配比、反应能量供给方式及搅拌强度是决定并影响LDH-ASP载药效率的基本因素, LDH-ASP结构参数可以反映药物负载情况、并与其释放性能明确相关; LDH对ASP的负载与释放均致晶胞参数改变、结晶度下降; 载药体与前体的晶态属性、热力学行为及表面特性相似, 而释放药物后固相的晶态性征减弱、无定形性增强、通道吸附活性降低, 有利于使命后载体在体内降解消除.  相似文献   
9.
采用Taguchi试验方法优化出了以高岭土为原料制备高硅NaY分子筛的最佳合成参数,考察了硅溶胶的加入量、反应体系的碱度、加水量以及晶化时间对NaY分子筛硅铝比和结晶度的影响。结果表明,高硅NaY分子筛的最佳合成条件是:反应体系各组分的物质的量比为7.5SiO2∶1.0Al2O3∶2.2Na2O∶120H2O,晶化时间为16 h。同时发现,对合成样品性能的影响最为显著的因素是硅溶胶的加入量和碱度。采用X射线衍射、N2静态容量吸附法和扫描电镜对利用最佳条件所合成样品的硅铝比、比表面积、孔分布以及表观形貌进行了表征。结果显示,以高岭土原料制备的NaY分子筛比参考样品拥有更高的硅铝比和更大的比表面积。  相似文献   
10.
植物源防腐剂因其环保、广谱、高效等特点越来越受到木材防腐行业的重视,从微观层面探索香樟提取物影响木材腐朽的机理是发展利用植物源防腐剂的重要基础。试验采用香樟木质部的四种溶剂提取物、ACQ及樟脑配制成防腐剂进行防腐试验,结果表明:10%浓度的香樟木质部甲醇提取物以及4%浓度的ACQ处理试件均达到I级强耐腐水平,4%樟脑、10%香樟乙酸乙酯和10%丙酮提取物处理的试件达到Ⅱ级耐腐水平。通过XRD对比发现结晶区2θ衍射强度由大到小的顺序为:10%蒸馏水提取物处理材、马尾松素样、10%丙酮提取物处理材、10%甲醇提取物处理材、10%乙酸乙酯提取物处理材,四种香樟木质部提取物的防腐效果与相对结晶度大小呈正相关。通过FTIR研究发现表征纤维素和半纤维素的特征峰值越低,则被降解的量也越大,相对应的防腐剂防腐效果越差。处理试件中表征木质素的一系列特征峰峰高与未处理材相比有所升高。香樟甲醇提取物以及ACQ处理试件的I1 510/I1 738,I1 510/I1 374,I1 510/I1 160的比值最小,证明褐腐菌对其综纤维素的降解能力最弱,防腐效果最好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号