首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   769篇
  国内免费   886篇
化学   498篇
晶体学   4篇
力学   330篇
综合类   36篇
数学   87篇
物理学   2298篇
  2024年   2篇
  2023年   36篇
  2022年   26篇
  2021年   45篇
  2020年   51篇
  2019年   38篇
  2018年   42篇
  2017年   53篇
  2016年   55篇
  2015年   62篇
  2014年   144篇
  2013年   115篇
  2012年   102篇
  2011年   160篇
  2010年   153篇
  2009年   148篇
  2008年   162篇
  2007年   139篇
  2006年   201篇
  2005年   144篇
  2004年   176篇
  2003年   118篇
  2002年   119篇
  2001年   91篇
  2000年   90篇
  1999年   72篇
  1998年   72篇
  1997年   78篇
  1996年   77篇
  1995年   48篇
  1994年   82篇
  1993年   75篇
  1992年   99篇
  1991年   55篇
  1990年   64篇
  1989年   38篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
排序方式: 共有3253条查询结果,搜索用时 31 毫秒
1.
建立了碰撞池-电感耦合等离子体质谱法测定芝麻中痕量的锗元素(germanium , Ge)。采用微波消解,碰撞池(KED模式)-电感耦合等离子体质谱检测,在线引入内标元素铑(Rh),同时消解液中加入3%正戊醇增敏。结果 3 % 正戊醇可使74Ge的上机检测信号强度提高2.85倍,74Ge校正曲线线性相关系数为1.00000,检出限为0.0555 μg/kg,加标回收率为92.0%~106%,相对标准偏差(relative standard deviation, RSD%)为2.6%~4.3%。采用建立的方法测定7种国家标准物质,检测结果均在认定值范围内,RSD%为2.5%~8.8%。结论 该方法灵敏度高、准确,可实现批量检测,适用于芝麻中痕量锗的检测。  相似文献   
2.
基于空间机构的运动特性,考虑空间颤振环境的影响,采用粗粒化分子动力学研究MoS2/Ag薄膜的碰撞滑动接触摩擦性能,建立颤振环境碰撞滑动接触摩擦的粗粒化分子动力学模型,对比了纯Ag和MoS2/Ag薄膜的摩擦性能,研究了初始碰撞速度、滑动速度以及空间温度对碰撞滑动接触摩擦过程的影响. 结果表明:与纯Ag相比,MoS2/Ag薄膜表现出更优异的摩擦性能;压头碰撞速度对动能有一定的贡献,初始碰撞速度的增加会增大压头压入基体的深度,使得平均摩擦力增大;滑动速度的增加会加剧原子间的相互剪切摩擦,使平均摩擦力增加;MoS2/Ag薄膜在100~500 K温度范围内表现出良好的摩擦性能,当空间温度为600 K时,其摩擦性能降低,并伴随着MoS2膜的破裂.   相似文献   
3.
龚良飞  张庆明  龙仁荣  张凯  巨圆圆 《爆炸与冲击》2021,41(2):021402-1-021402-17
超高速碰撞产生的电磁辐射是固体物质在强冲击作用下的重要物理响应,在深空探测、航天器对空间碎片的防护设计、武器毁伤评估应用广泛。本文中概述了超高速碰撞产生的电磁辐射现象,总结了不同碰撞条件下,超高速碰撞产生微波和闪光的时频特性;从超高速碰撞产生材料破碎和产生等离子体两个方面,分析了超高速碰撞产生微波的辐射模型;归纳了超高速碰撞下的发光机理,并阐述了超高速碰撞产生连续光谱和线谱的辐射模型,指出了超高速碰撞产生电磁辐射研究存在的不足与发展趋势。  相似文献   
4.
在宽窄水平导轨上进行纯滚动双钢球碰撞实验,发现它与滑动运动中的双钢球碰撞实验明显不同;其原因在于纯滚动双钢球的碰撞是在碰撞点的正碰和切向碰撞的复合碰撞,两类碰撞遵从不同的动力学规律;碰撞过后,两钢球的运动状态都不再是纯滚动,要恢复成纯滚动,每一个钢球都必须通过自身与导轨之间的相互作用,经历一次自调整阶段;而自调整阶段的能量损耗,与钢球的滚动半径和它的即时状态与纯滚动的偏离有关.  相似文献   
5.
本文采用基于多体格林函数方法和Bethe-Salpeter方程(GW/BSE)的电子结构计算方法和非绝热动力学模拟研究了两种不同桥连化学键构型(5-6构型和6-6构型)的酞菁锌-富勒烯(ZnPc-C60)给受体复合物的激发态性质及其弛豫过程. 对于6-6构型,ZnPc-C60的最低激发态S1态为光谱明态,即ZnPc的局域激发(LE)态,因此,6-6构型的ZnPc-C60在光激发之后几乎不会发生电荷分离过程. 相比之下,5-6构型的ZnPc-C60的S1态是C60的LE态,为光谱暗态,而作为光谱明态的ZnPc的LE态的能量更高. 而且,在ZnPc和C60的LE态之间还存在若干电荷转移(CT)态. 因此,电荷转移会在从高能的ZnPc的LE态到低能的C60的LE态的弛豫过程中发生. GW/BSE级别的非绝热动力学模拟结果进一步验证了电子结构计算的结论,并给出了相关过程的时间尺度:从ZnPc到C60的超快激发态能量转移过程在前200 fs完成;随后发生的是由C60到ZnPc的超快空穴转移过程. 本工作表明不同的桥连化学键模式(即5-6和6-6构型)可用于调节ZnPc-C60给体-受体复合物的激发态性质及其光电性质. 与此同时,本工作证明了GW/BSE级别的非绝热动力学方法是探索非周期性给体-受体复合物、有机金属配合物、量子点、纳米团簇等复杂体系的光诱导动力学的可靠工具.  相似文献   
6.
陈莹  陈小伟 《爆炸与冲击》2021,41(2):021403-1-021403-27
基于弹丸在超高速撞击薄板时破碎形成碎片云的机理,Whipple防护结构能够对航天器所面临的空间碎片及微流星体等威胁形成有效防护。通过回顾Whipple防护结构的研究和发展历程,对多层板结构、填充式防护结构、夹芯板结构等进行对比,分析其力学效应和防护性能;总结可应用于含泡沫、蜂窝、梯度和编织等材料的防护结构超高速撞击的数值模拟方法及其改进方法;结合相关材料的超高速撞击试验及数值模拟结果,为防护结构未来的研究方向提出建议。  相似文献   
7.
采用高速摄影技术结合阴影法,对静止水中垂直壁面附近上升单气泡运动进行实验研究,对比气泡尺度及气泡喷嘴与壁面之间的初始无量纲距离(S~*)对气泡上升运动特性的影响,分析气泡与壁面碰撞前后,壁面效应与气泡动力学机制及能量变化规律.结果表明,对于雷诺数Re≈580~1100,无量纲距离S~*2~3时,气泡与壁面碰撞且气泡轨迹由无约束条件下的三维螺旋转变成二维之字形周期运动;当S~* 2~3时,壁面效应减弱,有壁面约束的气泡运动与无约束气泡运动特性趋于一致.气泡与壁面碰撞前后,壁面效应导致横向速度峰值下降为原峰值的70%,垂直速度下降50%;气泡与壁面碰撞前,通过气泡中心与壁面距离(x/R)和修正的斯托克斯数相关式可预测垂直速度的变化规律.上升气泡与壁面碰撞过程中,气泡表面变形能量单向传输给气泡横向动能,使得可变形气泡能够保持相对恒定的弹跳运动.提出了气泡在与壁面反复弹跳时的平均阻力系数的预测模型,能够很好地描述实验数据反映出的对雷诺数Re、韦伯数We和奥特沃斯数Eo等各无量纲参数的标度规律.  相似文献   
8.
源于20世纪90年代的单分子显微成像技术成功实现了对单分子酶的催化过程实时监控,此后单分子酶学的研究进入了快速的发展时期,发现了多种酶的新单分子行为及反应机制。单分子酶学的研究能够发现隐藏于整体平均水平下的单个酶分子的个体行为,揭示了酶与底物作用的动态变化,加深了人们对各种生化反应的理解。  相似文献   
9.
针对多声表面波传感器系统中各传感器信息读取时会产生通信碰撞的问题,提出了一种可实现防碰撞通信的新型声表面波温度传感器;通过分析声表面波温度传感器的回波脉冲信号,将沃尔什码作为编码内容实现了多声表面波温度传感器系统中各传感器的正交编码;将传感器对应的匹配信号与系统回波信号进行互相关运算,提取了系统中各传感器的感测温度信息,达到了防碰撞通信的目标;该传感器兼顾编码效率和加工工艺两方面要求,简化感测信息提取的复杂程度;仿真实验验证了上述理论的正确性。  相似文献   
10.
研究了经L-y半胱氨酸修饰后的碳点(CDs)-荧光素(FAM)荧光共振能量转移体系,并利用该体系建立了测定阿司匹林(ASP)的新方法。结果表明:在λex=330 nm下,于p H 7.0的Tris-HCl缓冲液中,CDs与FAM反应5 min后能发生有效的荧光共振能量转移,能量供体CDs将能量转移到受体FAM,使FAM的荧光显著增强,而ASP的加入可有效猝灭FAM的荧光,且ASP浓度在1.0~150.0μg/m L范围内与体系的荧光猝灭值ΔIF呈良好的线性关系(r=0.999 6),基于此建立了测定ASP的新方法。在最佳实验条件下,方法的检出限达0.33μg/m L(3δ/k,n=11),回收率为97.1%~105.3%,相对标准偏差(RSD)不大于4.6%(n=6)。常见的无机离子以及与ASP同类型的药物对测定影响较小,方法的选择性较好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号