首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   62篇
  国内免费   21篇
化学   6篇
力学   56篇
综合类   4篇
数学   16篇
物理学   160篇
  2023年   8篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   19篇
  2013年   7篇
  2012年   11篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   12篇
  2007年   11篇
  2006年   13篇
  2005年   14篇
  2004年   21篇
  2003年   12篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
基于γ-Reθt转捩模型,对旋转工况下加装涡流发生器NREL Phase Ⅵ风力机进行CFD数值模拟.本研究在叶片吸力面加装30对涡流发生器,分析来流风速7、10、13、15、20、25 m/s六个工况下,叶片表面绕流、风轮转矩和叶片表面压力系数及表面流线的气动仿真结果,并与NREL试验数据、光滑叶片模拟结果比较分析.研究结果表明,涡流发生器明显改善叶片表面的流动分离,提高叶片输出转矩,其中10、15、20 m/s风速下分别提升3.7%、10.8%、14.6%;从剖面流场看,涡流发生器可以使涡强度减小、涡高度降低、分离涡后移,对提升风力机气动性能等意义重大.计算结果与Phase Ⅵ风力机试验结果吻合良好,湍流模型的输出转矩最大误差仅9.3%.  相似文献   
2.
以脉冲电流作为激励的电磁轨道炮无可避免地在不锈钢管身上感应出巨大涡流,涡流不仅自身损耗能量,而且削弱电枢的推进力,降低发射效率。为深入研究管身对电磁轨道炮的影响,结合场路模型计算了电磁轨道炮系统的发射效率和涡流能耗,讨论了不同管身结构和材料下的发射效率,进一步分析了管身对电磁轨道炮力学特性的影响。结果表明:基于10MJ脉冲电源的中口径电磁轨道炮,其不锈钢管身将大幅削弱系统的发射效率,管身涡流能耗比炮口动能的一半还多;采用层压式结构的高导磁材料作为管身,发射效率的提升尤为明显;管身对电枢轴向力的削弱是导致发射效率下降的根本原因,对电枢径向力的削弱则不利于电枢和轨道的良好接触,从而增加接触电阻,降低发射效率;但是对身管各部件径向力的减小有助于降低身管所需预紧力。  相似文献   
3.
实验演示装置的研制是基于电磁感应原理。装置很好地反映电磁场课程内容,是与应用结合比较紧密的实验演示项目。利用本实验装置可进行磁场强度与制动力的关系研究,展示涡流场与导体的相互作用原理,既充实了电磁场实验教学内容,也为涡流制动方面的研究提供了实验平台。  相似文献   
4.
S弯进气道流动控制技术的试验研究   总被引:1,自引:0,他引:1  
在低速风洞中采用微型叶片作为涡流发生器对某S弯进气道进行流动控制,通过风洞试验研究了微型叶片的不同参数(包括叶片高度、轴向位置、安装组数)对进气道气动特性的影响。试验测量了来流风速V=60m/s、模型攻角α=8°的条件下有/无微型导流叶片时进气道出口截面的总压和静压分布,并由此计算得到进气道出口截面的总压恢复系数和畸变指数。试验结果表明:微型叶片的不同参数(包括叶片高度、轴向位置、安装组数)对进气道流动有明显影响;通过在进气道第一弯道处安装合适高度和组数的微型叶片涡发生器,可以明显改善进气道出口流动;在现有的试验条件下,叶片高度h/Ri=0.02、轴向位置Xvg/Ri=1、组数Nvg=8是相对较优的流动控制方案,主要表现为:与未安装微型叶片相比,进气道流量系数φ=0.8时出口畸变指数降低了0.051,总压恢复系数提高了0.007。  相似文献   
5.
为了研究涡流发生器的污垢特性设计了一个能够在线监测温度、流量以及压差进而可以直接得到污垢热阻的实验台。通过验证实验、准确性分析与误差分析,验证了实验台设计精度在允许的误差范围内。示例实验结果表明实验台具有研究涡流发生器的污垢特性、压力特性以及换热特性的功能。  相似文献   
6.
磁共振成像(Magntic Resonance Imaging,MRI)技术是一种先进的医疗影像技术.在MRI系统中,通过梯度线圈电流快速切换方向,对待测区域施加梯度磁场,产生的梯度磁场会在其周围的金属体内激发出变化的涡旋电场,进而导致金属体内闭合的回路中产生对原来的梯度电流起抑制作用的感生电流,也就是我们所说的涡流.本文介绍了一种测量磁体涡流场的方法,结合电磁感应定律,设计了一种磁体涡流场测量装置,通过硬件采集以及软件处理的方法,将理想梯度场与实际磁场进行相减并将波形实时呈现,实验结果表明该方法可实现对磁体涡流场的测量.  相似文献   
7.
李高华  王福新 《物理学报》2018,67(5):54701-054701
螺旋状尾迹涡是直升机悬停旋翼流场的主导特征之一,其时空演化特性对旋翼气动性能具有重要影响.为了揭示悬停状态下旋翼尾迹涡的演化特征,对两桨叶刚性旋翼在高雷诺数悬停状态下的双螺旋状尾迹涡开展数值研究,采用基于流场特征的网格自适应技术,结合低耗散迎风/中心混合格式以及延迟脱体涡模拟方法对Caradonna-Tung旋翼在桨尖马赫数为0.439、桨尖雷诺数为1.92×10~6的悬停流场进行了高分辨率计算.基于欧拉和拉格朗日两种描述方法对计算结果进行了分析,揭示了双螺旋尾涡系统的演化特性:后缘尾涡面在桨尖附近的反向卷起及其与下游桨尖涡的相互作用是影响涡系稳定性以及涡-涡相互作用的重要因素;涡龄小于720°时,在固连于桨叶上的旋转坐标系中观察,涡系具有时空稳定性,涡管中心处轴向涡量随涡龄按照幂函数规律衰减.在固连于漩涡中心的局部极坐标系中,周向速度分布以及涡核半径随涡龄的变化与理论涡模型相符合,环量随涡龄的变化显示了漩涡的生长、平衡及耗散等演化阶段;模态分析结果表明,除点涡模态外,来流与点涡的复合模态在漩涡演化过程中对流动特征的转变有重要影响;涡系轴截面速度场的拉格朗日拟序结构直观地显示了漩涡场的时空演化过程,揭示了漩涡配对和共旋穿越等流动特征,同时也展示了后缘尾涡面卷起现象在漩涡演化过程中的作用.  相似文献   
8.
In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.  相似文献   
9.
对高温超导磁悬浮系统的动态特性研究表明,多种类型的高温超导磁悬浮系统都存在阻尼过低的问题,在系统中增设涡流阻尼器可以有效改善系统阻尼特性。为了探寻涡流阻尼器高温超导磁悬浮系统悬浮性能的影响,实验研究了几种不同厚度的铜质涡流阻尼器对准静态悬浮力和导向力的影响情况。实验表明,涡流阻尼器的引入对悬浮力和导向力的影响都是有利的,并且悬浮力的测试结果表明可能存在较为优化的阻尼器厚度。  相似文献   
10.
杨景  荀坤  陈晓林 《物理实验》2012,(12):15-25
第13届亚洲物理奥林匹克竞赛的2道实验试题为"摩擦系数"和"电磁感应".本文较全面地介绍了试题内容并给出了解答.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号