首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   423篇
  国内免费   292篇
化学   303篇
晶体学   14篇
力学   161篇
综合类   88篇
数学   769篇
物理学   1111篇
  2024年   5篇
  2023年   47篇
  2022年   47篇
  2021年   57篇
  2020年   44篇
  2019年   44篇
  2018年   22篇
  2017年   61篇
  2016年   44篇
  2015年   55篇
  2014年   115篇
  2013年   103篇
  2012年   134篇
  2011年   141篇
  2010年   144篇
  2009年   128篇
  2008年   127篇
  2007年   92篇
  2006年   114篇
  2005年   123篇
  2004年   96篇
  2003年   115篇
  2002年   96篇
  2001年   70篇
  2000年   56篇
  1999年   54篇
  1998年   51篇
  1997年   42篇
  1996年   42篇
  1995年   45篇
  1994年   37篇
  1993年   22篇
  1992年   14篇
  1991年   17篇
  1990年   10篇
  1989年   14篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有2446条查询结果,搜索用时 15 毫秒
1.
利用标量化方法建立对称向量拟均衡问题有效解的存在性定理。作为标量化方法的应用,利用这一方法得到向量变分不等式和拟向量变分不等式有效解的存在性定理。  相似文献   
2.
缓发中子有效份额βeff是反应堆动态特性的重要参数,也是相对反应性与绝对反应性之间的转换桥梁,对于以反应性作为宏观参数的检验工作具有重要意义。测量采用基于Rossi-α方法的Nelson数法开展了快临界装置βeff的实验研究。通过采用铅屏蔽、更薄的6Li玻璃闪烁体、脉冲幅度甄别三种措施,降低了γ射线对测量的影响。实验中测量了反应堆从-60¢到缓发临界之间的7个状态,最终测量得到βeff值为0.006 66,不确定度为7.88%;与理论计算数值偏差为2.15%。测量结果与理论值符合良好,表明了测量方法的有效性。  相似文献   
3.
粗糙底床泥-水界面区域的物质交换过程不仅与水动力作用有关,还涉及到底床物理特性和床面形态的影响.为研究粗糙底床渗透率和床面微地形对泥-水界面物质交换过程的综合影响,通过实验室环形水槽实验,测量得到不同砂质平整底床和存在离散粗糙元床面条件下,泥-水界面物质交换通量和有效扩散系数的定量数据和变化特征,并采用参数化方法分析无量纲控制参数变化范围内界面物质交换特性的主导机制.实验结果表明,粗糙底床渗透率和床面微地形共同对泥-水界面物质交换过程起重要作用.与平整底床相比,离散粗糙元局部绕流结构驱动的附加泵吸交换不同程度增大了界面物质交换通量,其增强效应与底床渗透率和床面粗糙度的变化密切相关.随底床渗透率和床面粗糙度的增大,有效扩散系数总体呈增大趋势,湍流渗透对界面物质交换的影响趋于增强,而泵吸交换的相对贡献趋于减弱.因此,分析存在床面微地形粗糙底床的主导界面物质交换机制,需要考虑底床渗透率和床面粗糙度的综合影响.  相似文献   
4.
利用有效场理论研究了双模随机交错晶场中混合自旋 Blume-Capel 模型纳米管系统的重入现象, 发现了系统的重入现象与晶场取值概率、 晶场强度和外壳层与内壳层格点间最近邻交换相互作用的关系. 结果表明: 取值概率、 交换相互作用、 晶场强度和温度等诸多因素相互竞争, 使系统表现出丰富的磁化现象: 正( 负) 晶场较弱时, 系统只发生二级相变; 随着正( 负) 晶场增强, 系统的二级相变消失, 呈现一级相变; 一定条件下, 系统会出现重入现象.  相似文献   
5.
飞行器液压导管受接头和卡箍等约束,在使用的振动环境中,会因弯曲应力而导致破裂,影响到飞行安全.本文对飞行器液压系统通用的不锈钢导管的裂纹萌生寿命进行了试验研究.首先在对8 mm、12 mm 无缺陷导管和含U 型缺口8 mm 导管的疲劳试验和有限元分析的基础上,得到了导管的最大拉应变-裂纹萌生寿命数据.然后采用基于强度极限和弹性模量估算法的Manson-Coffin 公式来预测导管裂纹萌生寿命.最后引入加载类型修正系数、表面质量修正系数、试样尺寸修正系数、应力集中敏感系数和有效应力集中系数,使修正后的公式对三种类型的导管均有较好的裂纹萌生寿命预测精度.  相似文献   
6.
Yb3+掺杂晶体材料是重要的激光材料,在超短脉冲激光、大功率激光等领域有重要应用前景,但长期以来很难通过实验拟合确定Yb3+晶体场参数,尤其是低对称体系,从头计算是解决此问题的重要途经.本文介绍了适合计算稀土离子掺杂晶体的从头计算DV-Xα方法和有效哈密顿量模型,用该方法计算了Yb3+掺杂M型和M'型钽铌酸盐的晶场参数和旋轨耦合参数,得到的能级结构和实验能很好地符合,并发现了Yb3+掺杂钽铌酸盐的晶场强度参数随稀土原子序数呈现规律变化.表明结合DV-Xα计算和有效哈密顿量方法是计算Yb3+掺杂低对称钽铌酸盐晶体场的有效途径,结果显示Yb3+掺杂钽铌酸盐晶体有望成为新型全固态激光工作物质.  相似文献   
7.
开发了一种铜试剂(二乙基二硫代氨基甲酸钠,DDTC)水相分光光度法测定土壤有效铜的方法。利用阿拉伯树胶做增溶剂,柠檬酸-EDTA溶液做干扰掩蔽剂,DDTC能够与铜离子形成稳定的黄色络合物,可直接在水溶液中进行分光光度法测定。络合物的最大吸收波长为454 nm,摩尔吸光系数为1.02×104L·mol-1·cm-1,铜含量在0~4μg/mL范围内符合比尔定律,线性相关系数r=0.9996,方法检出限为0.031μg/mL,平均回收率104.8%,RSD为3.2%。本法对红壤加铜培养实验的测定结果表明,土壤有效铜含量与土壤加铜水平呈线性相关,与电感耦合等离子发射光谱法(ICP-AES)相比,有效铜含量和相对标准差均无显著差异。  相似文献   
8.
离子特异性效应在固-液界面反应中是普遍存在的. 近期研究指出, 在较低电解质浓度的某些体系中, 离子特异性效应可能并非来源于色散力、经典诱导力、离子半径或水合半径的大小等, 而是界面附近强电场中的离子极化作用. 这种作用可使界面附近的吸附态反号离子被强烈极化(高达经典极化的104倍). 强烈极化的结果将导致离子在界面附近受到的库仑力远远超过离子电荷所能产生的库仑力, 这体现在离子的有效电荷将远大于离子的实际电荷. 因此胶体体系中基于这种强极化的离子有效电荷可以用来定量表征离子特异性效应的强度. 本研究在蒙脱石-胡敏酸混合悬液凝聚过程中发现了Na+、K+、Ca2+、Cu2+四种离子的离子特异性效应, 提出了基于激光散射技术测定离子有效电荷的方法, 并成功获得了被强烈极化后的离子有效电荷数值. 实验测得的Na+、K+、Ca2+、Cu2+四种离子的有效电荷值分别为: ZNa(effective)=1.46, ZK(effective)=1.86, ZCa(effective)=3.92, ZCu(effective)=6.48.该结果表明: (1) 离子在强电场中的极化将大大提高离子的有效电荷, 从而极大地增强离子所受的库仑作用力;(2) 离子的电子层数越多, 离子极化越强烈, 离子的有效电荷增加越多.  相似文献   
9.
以微波为热源处理放射性废物的相关技术和装备的研究,在国外已经达到较高水平,在我国的相关研究较少。微波加热即物料在微波场中吸收消耗微波能量,并转化为热能用于物料温度升高。对于物料的处理效果主要与微波的有效输出功率有关。参考Schillman法测定了包括放射性废物微波处理装置的微波炉的有效输出功率,且经验证测定结果准确。微波有效输出功率的确定将对放射性废物微波处理工艺的研究打下基础。  相似文献   
10.
为了研究热-流-固耦合作用下页岩渗透率的演化机制,考虑热解吸、有效应力和热膨胀对页岩渗透率的影响,提出了页岩的有效应力-渗透率模型,该模型能够分析吸附应变和热膨胀应变对页岩渗透率的影响机制。基于该模型和多孔介质弹性理论,建立了单轴应变条件下页岩气储层的热解吸渗透率模型,该模型能够探讨页岩渗透率随温度和孔隙压力的演化规律。利用室内实验观测的页岩岩样渗透率实验数据,验证了该模型的有效性和准确性。结果表明:(1)热解吸渗透率模型能较好地拟合恒压变温条件下的Marcellus页岩渗透率。(2)探讨了恒温条件下页岩渗透率随孔压的演化机制,发现恒温条件下渗透率的演化规律呈“U形”,温度越高,渗透率随孔压下降的反弹现象越不明显。(3)分析了恒压条件下页岩渗透率随温度的演化机制,发现恒压条件下渗透率随温度的演化规律呈“倒U形”,孔隙压力越大,温度对渗透率的影响越小。(4)分别在恒温和恒压条件下对热解吸渗透率模型进行敏感性分析,发现泊松比越大,渗透率比值梯度越大,孔隙体积模量越大,渗透率比值梯度越小。恒压条件下,当线胀系数大于临界值或朗缪尔体应变小于临界值,渗透率的演化规律不呈现“倒U形”。恒温条件下,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号