首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2780篇
  免费   1571篇
  国内免费   558篇
化学   179篇
晶体学   17篇
力学   228篇
综合类   129篇
数学   1994篇
物理学   2362篇
  2024年   6篇
  2023年   62篇
  2022年   81篇
  2021年   83篇
  2020年   68篇
  2019年   83篇
  2018年   53篇
  2017年   90篇
  2016年   71篇
  2015年   139篇
  2014年   217篇
  2013年   157篇
  2012年   174篇
  2011年   201篇
  2010年   248篇
  2009年   202篇
  2008年   287篇
  2007年   243篇
  2006年   226篇
  2005年   189篇
  2004年   208篇
  2003年   166篇
  2002年   181篇
  2001年   169篇
  2000年   145篇
  1999年   97篇
  1998年   119篇
  1997年   114篇
  1996年   116篇
  1995年   106篇
  1994年   78篇
  1993年   71篇
  1992年   62篇
  1991年   82篇
  1990年   65篇
  1989年   57篇
  1988年   38篇
  1987年   39篇
  1986年   18篇
  1985年   22篇
  1984年   24篇
  1983年   22篇
  1982年   23篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1951年   1篇
排序方式: 共有4909条查询结果,搜索用时 171 毫秒
1.
非对称声分束超表面是由人工微单元结构按照特定序列构建的二维平面结构,可将垂直入射的声波分成两束传播方向和分束比自由调控的透射波,在声功能器件设计及声通信领域具有广泛的应用前景。本文系统研究了一种实现非对称声分束的设计理论和实现方法,基于局域声功率守恒条件研究了声分束器的设计理论、阻抗矩阵分布、法向声强分布、声压场分布等。利用遗传算法对四串联共振腔结构进行参数优化实现了声分束器所需的阻抗矩阵分布,声压场分布表明声波入射到声分束器后在入射侧激发出两列传播方向相反且幅值和衰减系数均相同的表面波,实现了入射侧与透射侧的局域声功率相互匹配。声波经过声分束器后被分为两束透射波,两束透射波的折射角和透射系数与理论值十分吻合,证明了设计理论及实现方法的正确性和可行性。本文的研究工作可以为新型非对称声分束结构设计提供理论参考、设计方法和技术支持,并促进其在工程领域的实际应用。  相似文献   
2.
3.
2019年10月18日–20日,中国声学学会生物医学超声工程分会、中国生物医学工程学会医学超声分会与中国超声医学工程学会仪器工程开发专业委员会在北京联合主办了“2019年度中国生物医学超声联合学术年会”,同期共同举办的还有国际分子影像与微创治疗大会、国际肌肉骨骼及浅表器官超声研讨会和国际生物医学造影技术会议。  相似文献   
4.
针对任意阻抗壁面条件一维管腔声学系统建模,对系统动力学特性进行预报。为了满足阻抗边界条件对声压一阶导数连续性要求,管腔声压函数通过在标准傅里叶级数端点位置引入边界光滑辅助多项式进行构建。结合壁面阻抗声学边界和管腔声学Helmholtz控制微分方程得到强形式标准特征值问题,获得相应的声学模态信息。在数值仿真中,通过算例给出各种边界条件下管腔声学模态频率、声压振型、声压和质点振速频率响应曲线,与现有文献中相关结果进行对比,充分验证了本文求解方法的正确性和有效性,证明该方法可对任意阻抗壁面条件管腔系统声学特性进行准确预报。   相似文献   
5.
张威  翟明浩  黄子龙  李巍  曹毅 《应用声学》2020,39(2):231-235
针对国内外缺少对振动轮噪声预估的问题,以某型振动轮为研究对象,首先基于动力学有限元理论对振动轮进行频率响应分析,其次采用声学边界元技术对振动轮辐射噪声进行了数值模拟,并通过实验验证了仿真结果的准确性,然后比较了垂直振动与圆周振动两种不同激振形式对辐射噪声的影响,得出垂直振动辐射噪声低的结论,最后对驾驶室声腔模态进行了仿真,与振动轮激振频率相近发生共振。通过调整激振频率,降低了司机耳旁噪声。所得研究成果可为振动轮辐射噪声的预估与改进提供一种切实可行的参考依据。  相似文献   
6.
董荣荣  张超  张耀明 《力学学报》2020,52(2):472-479
三维位势问题的边界元分析中,关于坐标变量的边界位势梯度的计算是一个困难的问题. 已有一些方法着手解决这个问题,然而,这些方法需要复杂的理论推导和大量的数值计算. 本文提出求解一般边界位势梯度边界积分方程的辅助边值问题法. 该方法构造了与原边界值问题具有相同解域的辅助边值问题,该辅助边值问题具有已知解,因此通过求解此辅助边值问题,可获得梯度边界积分方程对应的系统矩阵,然后将此系统矩阵应用于求解原边值问题,求解过程非常简单,只需求解一个线性系统即可获得原边值问题的解. 值得注意的是,在求解原边值问题时,不再需要重新计算系统矩阵,因此辅助边值问题法的效率并不很差. 辅助边值问题法避免了强奇异积分的计算,具有数学理论简单、程序设计容易、计算精度高等优点,为坐标变量梯度边界积分方程的求解提供了一个新的途径. 3个标准的数值算例验证了方法的有效性.   相似文献   
7.
<正>为了把"教学做"融为一体,北京工业大学实验班大学物理课开展了"课后沙龙"活动。学生在第四节下课后因为食堂拥挤不急于离开教室,教师因势利导,利用课后10-20分钟时间,请两位同学给大家介绍他所感兴趣的科技知识或对生活的感悟等等。每周一次,一次两人,已经坚持开展了两届。对愿  相似文献   
8.
自然冷却和遇水冷却后高温花岗岩力-声特性试验研究   总被引:1,自引:0,他引:1  
以松辽盆地露天花岗岩为研究对象,对自然冷却和遇水冷却后高温花岗岩进行单轴压、拉和声波测定试验。研究不同方式冷却后花岗岩温度(100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃,以下简称100℃-800℃)与表观形态、纵、横波波速、弹性模量、泊松比、抗压强度、抗拉强度间关系,并将纵、横波波速与抗压强度、弹性模量建立联系。同时考虑遇水冷却后静置过程对花岗岩力-声性质影响。研究表明:(1)静置0h-2h是质量损失、纵波波速下降主要时段,静置6h后变化率可以忽略;自由水损失量与力-声特性损失量存在一定线性关系;(2)温度升高,自然冷却后花岗岩纵、横波波速、弹性模量、抗压强度、抗拉强度呈线型下降,遇水冷却后呈凹线型下降;高于300℃,自然冷却后花岗岩力-声参数均大于遇水冷却,泊松比变化率与其相反,600℃时冷却方式不同对花岗岩纵、横波波速、弹性模量、抗压强度影响达到最大,遇水冷却比自然冷却分别低33.33%、31.88%、53.33%、31.74%,700℃-800℃时冷却方式对花岗岩力声特性影响减小;(3)温度变化,花岗岩纵、横波波速与抗压强度、弹性模量呈良好相关性。所得结论可以提高花岗岩力-声特性测量准确性,为力学特性预测提供一个可行方法,并为岩体工程安全稳定性评估提供依据。  相似文献   
9.
颗粒材料三维应力路径下的接触组构特性   总被引:1,自引:0,他引:1  
颗粒材料的宏观应力变形特征与其微观接触力、组构等紧密相关.一般而言,强接触系统属于颗粒内部体系的传力结构,其对应的组构张量是影响宏观应力性质的重要因素.细观数值方法(如离散单元法)能够反映物理试验的基本规律,并且可以方便地提取宏微观数据来研究颗粒体系的应力变形机制.采用离散单元法(discrete element method,DEM)进行一系列等$p$等$b$应力路径下颗粒材料的真三轴试验,在此基础上研究了三维应力路径下颗粒材料的宏微观力学参数的演化过程、三维组构张量与应力张量多重联系以及强接触体系反映的宏观应力特征.研究表明:颗粒体系偏应力峰值状态和临界状态均存在与加载路径无关的宏微观特征;三维应力路径下组构张量与应力张量存在非共轴性,但其联合不变量演化过程表现出加载路径无关的特征;与弱接触系统的组构张量相比,强接触系统的组构张量更能反映宏观应力张量的特征;强弱接触体系的组构张量对颗粒体系宏观响应的贡献不同,其分界点存在一定取值范围,但采用平均接触力较为简单合理.   相似文献   
10.
针对GNSS/SINS/摄影测量组合导航中某个子系统发生故障时,整个导航系统易受到故障数据污染的问题,提出了一种基于快速强跟踪AUKF的双状态卡方(Χ~2)检测数据融合方法。首先,采用快速强跟踪AUKF算法进行滤波;然后,引入卡方检验通过检测UKF子滤波器输出的状态向量来定位故障参数;最后,采用强跟踪滤波准确跟踪状态矢量突变以增强系统鲁棒性,并根据自适应因子实时调整预测协方差阵以修正增益矩阵,使滤波结果不受异常信息的干扰。将提出的改进算法与常规算法分别应用于无人机着陆导航系统,结果显示:与传统UKF相比,提出的算法得到的位置误差减少了62.6%以上;与强跟踪UKF相比,导航误差也至少减小了32.6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号