首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   245篇
  国内免费   96篇
化学   89篇
晶体学   32篇
力学   203篇
综合类   28篇
数学   55篇
物理学   656篇
  2023年   12篇
  2022年   29篇
  2021年   25篇
  2020年   20篇
  2019年   33篇
  2018年   26篇
  2017年   21篇
  2016年   34篇
  2015年   36篇
  2014年   76篇
  2013年   60篇
  2012年   51篇
  2011年   56篇
  2010年   55篇
  2009年   46篇
  2008年   80篇
  2007年   44篇
  2006年   30篇
  2005年   42篇
  2004年   37篇
  2003年   36篇
  2002年   28篇
  2001年   29篇
  2000年   15篇
  1999年   19篇
  1998年   21篇
  1997年   11篇
  1996年   8篇
  1995年   18篇
  1994年   16篇
  1993年   10篇
  1992年   9篇
  1991年   9篇
  1990年   10篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
排序方式: 共有1063条查询结果,搜索用时 13 毫秒
1.
六方氮化硼(hBN)具有跟石墨烯类似的层状结构和晶格参数,研究发现hBN薄膜具有良好的热传导、电绝缘、光学和力学等性能。本文从理论上研究了hBN薄膜对石墨烯-碳化硅(G/S)结构的近场热辐射的影响。研究发现在红外频段.hBN薄膜在低频率区和高频率区会增强G/S结构的近场热辐射,经计算在G/S结构中加入厚度为10 nm的hBN薄膜时获得的辐射热流是同物理条件下G/S结构的1.5倍;而在中频率区hBN薄膜的厚度阻碍了石墨烯表面等离激元和碳化硅表面声子极化激元的耦合,使得近场热辐射热流随hBN薄膜厚度增加而逐渐减弱。本研究的结果可为下一步实验与应用中对hBN薄膜厚度的选择提供理论基础。  相似文献   
2.
该文运用解析的方式推导了考虑声波衰减时兰姆波二次谐波的累积和传播规律,并用半解析方式将该理论推广到缓慢变厚度板的情况。由于色散特性,兰姆波二次谐波和基频波相速度不匹配,传播通常会产生拍频效应,使得二次谐波的振幅沿着传播距离周期性的归零。当考虑声波衰减或板的厚度缓慢变化的情况时,拍频效应将不再严格地被满足。二次谐波的振幅依然会沿着传播距离而振荡,但不会归零。该研究可以用于分析如何高效地激发和接收兰姆波的二次谐波,表征和评估不同厚度变化的结构中的微观结构损伤。  相似文献   
3.
油膜厚度是海面溢油污染评估分析的一个重要指标,激光诱导荧光(LIF)技术是目前最有效的海面溢油探测技术之一,基于LIF探测技术的油膜厚度反演算法当下仅有适用于薄油膜(≤10~20 μm)的评估方法,而对于较厚油膜(>20 μm)的评估目前尚无有效的反演算法。鉴于此,提出一种基于LIF技术适用于较厚油膜的反演算法,该算法采用油膜荧光信号反演油膜厚度,推导了油膜厚度反演公式,并给出了基于该反演算法的油膜厚度评估方法。首先采用最大类间方差算法(Otsu)选取合适的荧光光谱波段,然后根据选取波段内每个波长的光谱数据反演油膜厚度,最后采用反演油膜厚度的平均值作为油膜厚度评估结果。研究了该算法的适用范围,给出了该算法有效评估范围最大值与测量相对误差的关系,并结合消光系数给出了在多种测量误差条件下不同消光系数油品有效评估范围的最大值。通过实验对本文方法进行了验证,选用原油和白油的混合油(1∶50)作为实验油品,以波长为405 nm的激光作为激发光源,采集波长范围为420~750 nm,采集了海水背景荧光和拉曼散射光光谱、实验油品的荧光特征光谱和多种不同厚度的较厚油膜的荧光光谱。采用Otsu算法选取420~476 nm波段评估油膜厚度,在实验油品油膜厚度≤800 μm时,该算法对油膜厚度的评估具有较高的精度,平均误差为10.5%;在油膜厚度>800 μm时,平均误差为28.8%,评估误差较大且随油膜厚度的增加快速变大,该实验结果与利用测量相对误差和消光系数的分析结果一致。实验结果表明,该方法可以实现对海面较厚油膜厚度的有效评估,并可以根据测量相对误差和消光系数判断评估结果的有效性。  相似文献   
4.
娄艳芝  李玉武 《物理学报》2022,(14):216-225
本文通过分析200 kV加速电压条件下,单晶Si薄膜样品的透射电子显微镜(TEM)双束会聚束衍射(CBED) Kossel-M?llenstedt (K-M)花样,测定了单晶Si薄膜样品的局部厚度和Si晶体(400)晶面的消光距离ξ400.分析了影响测量不确定度的因素,并运用一阶偏导的方法讨论了各个因素对测量不确定度的影响系数,依据GB/T 27418-2017《测量不确定度评定与表示》对实验估计值进行了不确定度评定.结论如下:被测Si晶体局部厚度的实验估计值为239 nm,其合成标准不确定度为5 nm,相对标准不确定度为2.2%;包含概率为0.95时,包含因子为2.07,扩展不确定度为11 nm;加速电压为200 kV时,Si晶体(;400)晶面的消光距离ξ400的实验估计值为194 nm,合成标准不确定度为20 nm;包含概率为0.85时,包含因子为1.49,扩展不确定度为30 nm.影响试样厚度t0合成标准不确定度的主要因素是相机常数、加速电压和试样厚度;影响消光距离ξ合成标准不确定度的主要因素是相机常数、加速电压...  相似文献   
5.
煤矿冲击地压主要发生在巷道中,其主要原因之一是巷道围岩积聚了大量的弹性能。为得出矩形巷道围岩弹性变形能积聚特征,降低巷道支护成本,推导了巷道冲击破坏失稳能量准则,并建立了矩形巷道围岩能量积聚计算模型,理论分析了采深、巷道断面尺寸和煤层厚度对矩形巷道围岩能量积聚影响规律,得出:矩形巷道积聚的弹性能随采深的增加而增大,采深越深,巷道积聚的弹性能增长速率越快。巷道围岩积聚能量随巷道断面尺寸增加而增大。当煤层厚度小于巷道影响范围时,巷道积聚能量随煤层厚度增加而增大。在实际工程中,尽可能减小巷道断面尺寸,尽可能沿顶、底板布置巷道。研究结果为冲击地压巷道布置和降低巷道支护成本提供了理论依据。  相似文献   
6.
基于中美合作项目INDEPTH第3期在青藏高原布设的台站,使用虚拟震源测深法研究青藏高原中部的地壳厚度。结果显示,拉萨地体和羌塘地体的地壳结构存在巨大差异。拉萨地体的地壳厚度大约为57 km,与艾里均衡说预测的地壳厚度基本一致,说明拉萨地体的地壳结构比较简单。羌塘地体的地壳厚度为60~75 km,向北有增厚趋势,明显较艾里均衡说预测的地壳厚,说明羌塘地体地壳结构比较复杂,原因有可能是羌塘地体下存在高温流体和低速带,或者与印度板块岩石圈在班公湖-怒江缝合带以北向下俯冲有关。  相似文献   
7.
在强耦合极化子模型基础上,采用Lee-Low-Pines(LLP)变分法研究了极性晶体膜中激子与表面光学(SO)声子强耦合、与体纵光学(LO)声子弱耦合体系的性质.讨论了极性晶体膜中激子的诱生势与膜厚度和温度的变化关系.结果表明:激子的诱生势不仅与电子-空穴间距离有关,而且与极性晶体膜厚度有关,同时温度对激子诱生势的影响十分显著.  相似文献   
8.
同一种主体材料MADN中混掺不同的掺杂剂,分别制备了两种白光有机发光二极管,测试并研究了它们的发光效率、寿命、发光亮度、电致发光光谱以及色平衡度。结果表明,两种白光器件的性能受发光层的顺序和厚度的影响显著。发光层顺序由阳极到阴极方向为橙/蓝的器件的稳定性要优于发光层顺序为蓝/橙的器件,这是由于橙光发光层中的rubrene对空穴的陷进作用可捕获穿越橙光发光层中的空穴,从而有效地调控了器件内部的电子、空穴浓度的平衡。通过对器件的优化,制得了色坐标为(0.3201,0.3459)的接近标准白光的有机电致发光器件。  相似文献   
9.
X射线递变能量成像是依次获取复杂结构件在递变能量下的局部有效信息,并通过多谱融合获取完整结构信息。但是目前的能量选择主要以人工设定管电压步进为主,无法匹配检测对象的有效厚度变化率,成像效率及射线利用率较低。基于递变能量成像规律,提出一种最佳X射线管电压预测算法。该方法通过对检测物体进行变能量预扫描,提取图像序列中有效厚度(高质量区域)和临近厚度(预测区域),建立有效厚度的图像灰度与管电压、X射线光谱之间的物理模型,及临近厚度灰度差与电压的函数模型,进而得到临近厚度最佳成像时的能量预测模型。通过模型求解,实现了能量的自适应预测。以不同厚度钢块为对象,利用该算法逐一预测各个厚度钢块最佳成像时的管电压,并与实际值对比。实验结果显示,在低能时可跨3~4 mm准确预测,高能时可跨7~10 mm预测,精度可以达到95%以上。  相似文献   
10.
根据冰层厚度探测的实际需要,研究了频率域电磁法的冰层厚度探测系统.系统是利用频率域电磁法的基本原理设计,同时,利用椭圆率来消除一次场的影响,可实现一次和二次磁场的分离提取、数据采集等模块功能.并且在实验室对传感器的电流发射部分和数据接收部分进行了试验,与理论数据进行比对.实验结果表明,系统可实现冰层厚度检测和生消变化过程检测.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号