首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34546篇
  免费   6268篇
  国内免费   10459篇
化学   18380篇
晶体学   635篇
力学   3462篇
综合类   615篇
数学   3503篇
物理学   24678篇
  2024年   57篇
  2023年   886篇
  2022年   1216篇
  2021年   1265篇
  2020年   851篇
  2019年   1336篇
  2018年   907篇
  2017年   1217篇
  2016年   1298篇
  2015年   1228篇
  2014年   2539篇
  2013年   2049篇
  2012年   2295篇
  2011年   2346篇
  2010年   2326篇
  2009年   2502篇
  2008年   2625篇
  2007年   2283篇
  2006年   2289篇
  2005年   2087篇
  2004年   2058篇
  2003年   1793篇
  2002年   1514篇
  2001年   1537篇
  2000年   1189篇
  1999年   1203篇
  1998年   970篇
  1997年   991篇
  1996年   991篇
  1995年   1034篇
  1994年   829篇
  1993年   657篇
  1992年   706篇
  1991年   626篇
  1990年   585篇
  1989年   551篇
  1988年   160篇
  1987年   93篇
  1986年   67篇
  1985年   35篇
  1984年   23篇
  1983年   33篇
  1982年   17篇
  1981年   2篇
  1959年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
1.
三氧化二铋(Bi2O3)是氧离子导电体,为了获得它的原子热振动各向同性温度因子,对该粉末晶体进行X射线衍射实验,建立了晶体结构模型,利用Rietveld 精修方法的RIETAN-2000 程序对所得实验结果进行了晶体结构精修,通过最大熵方法(MEM)解析得到了粉末晶体的等高电子密度分布三维(3D) 和二维(2D)可视化图谱。结果表明,各原子Bi(1)、Bi(2)、O(1)、O(2)和O(3)的原子热振动各向同性温度因子分别为0.004 938 nm2、0.004 174 nm2、0.007 344 nm2、0.007 462 nm2、和0.007 857 nm2,等高电子密度分布的可视化,进一步验证了晶体结构模型和原子位置的准确性,这些参数对研究晶体材料的热性质具有一定参考意义。  相似文献   
2.
低维硅锗材料是制备纳米电子器件的重要候选材料,是研发高效率、低能耗和超高速新一代纳米电子器件的基础材料之一,有着潜在的应用价值。采用密度泛函紧束缚方法分别对厚度相同、宽度在0.272 nm~0.554 nm之间的硅纳米线和宽度在0.283 nm~0.567 nm之间的锗纳米线的原子排布和电荷分布进行了计算研究。硅、锗纳米线宽度的改变使原子排布,纳米线的原子间键长和键角发生明显改变。纳米线表层结构的改变对各层内的电荷分布产生重要影响。纳米线中各原子的电荷转移量与该原子在表层内的位置相关。纳米线的尺寸和表层内原子排列结构对体系的稳定性产生重要影响。  相似文献   
3.
《低温与超导》2021,49(4):57-63,108
热电制冷技术是一种主要基于帕尔贴效应的新型制冷技术,由于其具有结构简单、制冷迅速、寿命长等优点,热电制冷技术受到了越来越多的关注。通过对国内外相关文献的研究,对热电制冷技术的原理进行了阐述,并对热电制冷的应用和性能优化两方面的发展进行了综述。  相似文献   
4.
5.
在吸收光谱技术中,使用光学腔增长激光与气体介质的作用路径,可提升探测灵敏度.然而,高反射率腔镜会存在双折射效应,导致光学腔产生两个本征偏振态,入射光在两个偏振方向相移的不同会导致腔模的分裂,会引起腔增强光谱信号以及腔衰荡光谱信号的扭曲.本文观测到了双折射效应下腔增强信号的频率分裂现象,并给出了函数模型,拟合结果表明其可以准确得到透射腔模中不同偏振光的比例.根据上述比例,可给出考虑不同耦合效率、双折射效应下的腔衰荡信号模型,实验结果表明相较于传统e指数模型,本文模型可更精确描述腔衰荡信号,得到拟合残差的标准偏差最大抑制了9倍.该分析有利于改善腔衰荡信号信噪比和不确定性,提升其浓度反演准确度.  相似文献   
6.
二维过渡金属硫化物(TMDC)材料因为独特的激子效应和材料学性质,在太阳电池、光催化、传感器、柔性电子器件等领域得到广泛的应用。层数对其性质有显著的调控作用,自动检测识别所需层数的样品是其从实验室走进半导体制造工业的重要技术需求。本文结合反射高光谱成像技术与图像处理算法,发展了一种二维TMDC薄层样品的显微成像自动检测技术。基于自主搭建的反射高光谱成像系统,对制备的不同层数TMDC标准样品进行了光学对比度的系统研究,阐明了层数的差分反射光谱机理,提出了可靠的层数判定方法。基于传统边缘检测技术优化设计了一套图像处理算法,实现了TMDC样品的图像检测及层数鉴定。本文方法具有普遍性、实用性,结合自动对焦的扫描控制,能够实现大规模的自动化样品检测,这也为其他表面目标的显微识别和检测提供了新的灵感和参考。  相似文献   
7.
《大学化学》2022,(5):228-238
鲁米诺的合成与化学发光是一个极具展示度的基础化学实验。近年来,国内部分高校陆续开设了这一实验,引起不错的反响。为进一步丰富和提升该实验的科学理论内涵,我们进行了如下改进:1)在合成部分引入机械搅拌、硫粉还原和微波合成,实现安全、快速、高效制备高纯度鲁米诺的目的;2)在单次化学发光的基础上,特别引入宛如星辰闪烁般的振荡化学发光反应(鲁米诺/H2O2/SCN-/Cu2+/OH-振荡体系),该反应涉及非平衡态热力学和非线性化学等重要概念与基础理论知识,激发学生的求知欲;3)设计并搭建了可与荧光光谱仪配套使用的简易微型磁力搅拌加热装置,实现了对振荡化学发光的光强和振荡周期等数据的实时定量监测,使学生可以自行设计对比实验,探究影响振荡反应过程的因素,并总结振荡反应规律。该实验涵盖了多学科的重要知识点,兼具科学性与趣味性,对培养学生的探索精神和创新意识具有重要意义。  相似文献   
8.
多孔液体(Porous Liquids, PLs)是一类结合了多孔固体永久性孔隙与液态流动性优势的新材料. 自2007年, PLs的概念被首次提出以来, 其在合成策略与应用领域方面均取得了较大的突破. 然而, 传统的PLs因高黏度、高密度、高熔点与高原材料成本等缺陷极大程度制约了其在流动工业系统中的大规模应用. 因此, 迫切需要寻求理想的位阻溶剂用于制备先进的多孔液体. 离子液体(Ionic Liquids, ILs)因独特的可调节物理特性、非挥发性、高稳定性、易获得、经济性高、低再生能耗等特性, 使其成为构筑PLs中最具有应用前景的理想溶剂之一. 在过去的5年间, 基于多种ILs与先进多孔固体(如有机笼、金属有机框架、中空碳、沸石、多孔聚合物等)制备的多孔离子液体(Porous Ionic Liquids, PILs)被陆续报道. PILs独特的永久性孔隙、无溶剂挥发、再生能力强、黏度可调、低熔点、高稳定性等特性加快了其在气体吸附、分离、催化、萃取、分子分离等领域的快速发展. 本综述围绕PILs的构筑策略、特性、应用领域等阐述了其研究进展. 最后, 对PILs在制备中存在的挑战与未来的研究方向进行了归纳与展望.  相似文献   
9.
陈云  张萍萍 《化学教育》2022,43(5):96-101
从高中化学原子、分子等抽象性的知识教学出发,以防晒霜的防晒效果实验探究为例,探讨了现代分析仪器在高中化学教学中的应用。通过利用现代分析仪器紫外可见分光光度计,结合紫外线变色球实验探究防晒霜的防晒效果,分析并认识防晒霜中化学防晒的机理。结果表明,防晒霜的厚度越大、SPF越高,防晒霜的防晒效果越好,并且防晒霜的防晒效果可以持续一段时间,但是不同类型的防晒产品存在一定差异。在化学教学中渗透现代分析仪器的应用,为学生进一步了解化学学科在改变学习方式、拓宽学科知识领域、推动自身全面与可持续发展方面打下坚实的基础。  相似文献   
10.
针对我国小行星探测任务对电推进系统离子推力器设计要求,基于等离子体基本理论建立了多模式离子推力器输入参数与输出特性关系,完成各工作点下屏栅电压、束电流、阳极电流、加速电压,流率等输入参数设计,采用试验研究和理论分析的方法研究了推力器工作特性.试验结果表明:在设计输入参数下,23个工作点推力最大误差小于3%,比冲最大误差小于4%,在功率为289—3106 W下,推力为9.7—117.6 mN,比冲为1220—3517 s,效率为23.4%—67.8%,电子返流极限电压随着推力增加单调减小,最小、最大推力下分别为-79.5 V和-137 V,放电损耗随着功率增大从359.7 W/A下降到210 W/A,并在886 W时存在明显拐点,效率随功率增大而上升,在1700 W后增速变缓并趋于稳定,在轨应用可综合推力器性能、任务剖面要求、寿命,合理设计输入参数区间,制定控制策略.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号