首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21423篇
  免费   6580篇
  国内免费   12949篇
化学   19051篇
晶体学   747篇
力学   3667篇
综合类   665篇
数学   2520篇
物理学   14302篇
  2024年   59篇
  2023年   689篇
  2022年   811篇
  2021年   857篇
  2020年   715篇
  2019年   837篇
  2018年   618篇
  2017年   826篇
  2016年   854篇
  2015年   872篇
  2014年   2051篇
  2013年   1637篇
  2012年   1745篇
  2011年   1904篇
  2010年   1703篇
  2009年   1927篇
  2008年   2128篇
  2007年   1677篇
  2006年   1761篇
  2005年   1929篇
  2004年   1749篇
  2003年   1867篇
  2002年   1558篇
  2001年   1541篇
  2000年   1230篇
  1999年   889篇
  1998年   802篇
  1997年   737篇
  1996年   726篇
  1995年   706篇
  1994年   738篇
  1993年   526篇
  1992年   519篇
  1991年   498篇
  1990年   499篇
  1989年   428篇
  1988年   99篇
  1987年   86篇
  1986年   63篇
  1985年   37篇
  1984年   24篇
  1983年   17篇
  1982年   9篇
  1981年   1篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
1.
《大学物理》2021,40(9)
为有效提高大学物理实验课程的教学质量,本文提出了基于迁移理论的教学方法.该方法利用肖像式结构原则进行课前预习,构建良好的知识体系进行课前认知和态度迁移,在教学过程中通过探究式教学提高迁移效率,并通过课后反思和拓展来巩固迁移效果.实践表明,这一模式可以充分实现迁移理论在教学中的优势,加强学生思维的活跃性,使学生的实验过程从机械性的简单重复走向深度理解,最终增强学生的学习能力和创新能力。  相似文献   
2.
采用预热超声技术改善菠萝蜜种子分离蛋白(Jackfruit Seed Isolate Protein, JSPI)起泡性,探究起泡性与结构的关系。对预热温度,超声功率,超声时间进行了优化,得到最佳条件:预热温度60℃,超声功率600 W,时间20 min。结果得出,与JSPI相比,60℃+600 W处理的JSPI起泡性增加了58.44%(P<0.05),高于600 W(45.25%)和60℃(29.64%)。相比JSPI,泡沫稳定性没有提高(P>0.05)。SDS-PAGE凝胶电泳结果表明,600 W超声处理没有改变JSPI的分子量,60°C处理使JSPI的部分可溶性蛋白分子聚集,出现了新的蛋白条带。相关性结果表明,起泡性与JSPI的β-折叠和无规则卷曲含量成正相关。与JSPI相比,600 W,60℃,60℃+600 W处理后的荧光强度增强、表面疏水性(H0)提高,说明JSPI结构变松散,内部疏水基团暴露出来,疏水性增加,导致起泡性增加。电位结果表明,与JSPI相比,600 W处理的电位从-22.03增强至-24.53 mV(P<0.05)。60℃,60℃+600 W处理电位减弱,导致溶液体系不稳定。粒径结果表明,与JSPI相比,600 W处理粒径减小,60℃处理粒径增加。蛋白粒径减小、或占较低比例存在的粒径较大的蛋白群体均可以提高JSPI的起泡性。  相似文献   
3.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算。结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小。本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.232 eV、0.198 eV,费米能级均向低能区移动进入价带。由于Sc的3d态电子和Ce的4f态电子的影响,Sc、Ce掺杂的CrSi2在导带下方出现了杂质能级。掺杂后的CrSi2介电函数虚部第一介电峰峰值增加且向低能方向移动,说明Sc、Ce掺杂使得CrSi2在低能区的光跃迁强度增强,Sc-Ce共掺时更明显。Sc、Ce掺杂的CrSi2吸收边在低能方向发生红移,在能量大于21.6 eV特别是在位于31.3 eV的较高能量附近,本征CrSi2几乎不吸收光子,Sc单掺和Sc-Ce共掺CrSi2吸收光子的能力有所增强,并在E=31.3 eV附近形成了第二吸收峰。说明掺杂Sc、Ce改善了CrSi2对红外和较高能区光子的吸收。在小于3.91 eV的低能区掺杂后的CrSi2光电导率增加。在20.01 eV<E<34.21 eV时,本征CrSi2光电导率为零,但Sc、Ce掺杂后的体系不为零,掺杂拓宽了CrSi2的光响应范围。研究结果为CrSi2基光电器件的应用与设计提供了理论依据。  相似文献   
4.
5.
WS2由于其优异的物理和光电性质引起了广泛关注。本研究基于第一性原理计算方法,探索了本征单层WS2及不同浓度W原子替位钇(Y)掺杂WS2的电子结构和光学特性。结果表明本征单层WS2为带隙1.814 eV的直接带隙半导体。进行4%浓度(原子数分数)的Y原子掺杂后,带隙减小为1.508 eV,依旧保持着直接带隙的特性,随着Y掺杂浓度的不断增大,掺杂WS2带隙进一步减小,当浓度达到25%时,能带结构转变为0.658 eV的间接带隙,WS2表现出磁性。适量浓度的掺杂可以提高材料的导电性能,且掺杂浓度增大时,体系依旧保持着透明性并且在红外光和可见光区对光子的吸收能力、材料的介电性能都有着显著提高。本文为WS2二维材料相关光电器件的研究提供了理论依据。  相似文献   
6.
顾顺心  姜琴  施鹏飞 《化学进展》2022,34(9):1957-1971
铱(Ⅲ)配合物因其发光量子产率高且波长易调控、发光寿命长和光稳定性好的特点,在发光材料领域备受关注。铱(Ⅲ)配合物细胞渗透能力强,能靶向多种细胞组织并影响其结构和功能,表现出独特的抗肿瘤活性,是目前金属抗肿瘤药物特别是PDT光敏剂方向的研究热点。本文重点关注铱(Ⅲ)配合物的结构对其发光性能与抗肿瘤性能的影响,综述了近期铱(Ⅲ)配合物在生物成像、探针与传感、抗肿瘤诊疗等领域的研究进展,并对目前研究中存在的问题及其应用前景进行探讨和展望。  相似文献   
7.
采用态平均(CASSCF)/高度相关多参考组(MRCI)方法,对N2分子A3Σu+、B3Пg、C3Пu电子态的势能、跃迁偶极矩进行了高度相关的精确计算.计算的势能在平衡位置附近与RKR拟合的势能曲线非常一致,获得的跃迁偶极矩与已有实验值符合很好。首次对A3Σu+、B3Пg、C3Пu电子态的振转光谱常数随振动量子数v的变化进行系统定量计算,其结果与已有的实验观测数据相符.同时,获得了N2分子第一正带系的0-1、0-2、1-0、1-2、1-3、2-0、2-1、2-3、3-0、3-1和3-2光谱带分别在300,3000,6000,10000K时的谱线强度,如1-0带在3000,6000,10000K时的高温谱线带强度分别为1.58543×10-16 cm-1/(分子 cm-2)、6.07889×10-17 cm-1/(分子 cm-2)和2.3781×10-17 cm-1/(分子 cm-2).这些结果对N2分子进一步的理论研究、实际应用和高温大气的建模与研究具都有一定的参考价值.  相似文献   
8.
分子张力作为空间设计的重要组成部分正成为调控有机半导体的重要手段。由于分子内产生的拉伸张力、扭曲/弯曲张力以及空间张力而导致p轨道排布重组和构型构象结构发生变化,最近各种几何与拓扑结构的高张力有机半导体材料相继被报道,这使得高张力有机半导体材料成为有机电子领域研究的焦点。为了进一步梳理分子张力在有机半导体材料中扮演的角色与价值,该综述从分子张力的类型、实验与理论量化以及可视化出发,总结了高张力共轭芳烃的分子设计策略、与其光电性能分子张力之间的关系,以及这类新兴材料在光电领域的应用。最后,对高张力共轭芳烃的研究前景进行了展望,阐述了该类材料所面临的机遇与挑战。  相似文献   
9.
10.
人体内大部分生物学过程都离不开细胞黏附.细胞黏附行为主要由锚定于细胞膜上的特异性分子(又称受体和配体)的结合动力学关系来决定.已有研究表明,特异性分子的结合关系受外力及细胞膜波动等多种因素影响.然而,特异性分子刚度对细胞膜锚定受体 配体结合关系的影响机制仍不清楚.近期关于新冠病毒强传染力的研究表明,特异性黏附分子刚度对病毒与细胞结合具有重要影响.该文通过建立生物膜黏附的粗粒度模型,借助分子模拟和理论分析来研究分子刚度在黏附中的作用.结果表明,始终存在一个最佳膜间距及最佳分子刚度值,使得黏附分子亲和力和结合动力学参数达到最大值.这项研究不仅能加深人们对细胞黏附的认知,还有助于指导药物设计、疫苗研发等.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号