首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4258篇
  免费   240篇
  国内免费   138篇
化学   1068篇
晶体学   64篇
力学   303篇
综合类   91篇
数学   351篇
物理学   2759篇
  2025年   5篇
  2024年   48篇
  2023年   66篇
  2022年   130篇
  2021年   131篇
  2020年   130篇
  2019年   112篇
  2018年   90篇
  2017年   145篇
  2016年   169篇
  2015年   166篇
  2014年   230篇
  2013年   295篇
  2012年   179篇
  2011年   185篇
  2010年   190篇
  2009年   223篇
  2008年   218篇
  2007年   224篇
  2006年   175篇
  2005年   164篇
  2004年   145篇
  2003年   166篇
  2002年   142篇
  2001年   95篇
  2000年   118篇
  1999年   89篇
  1998年   94篇
  1997年   79篇
  1996年   60篇
  1995年   74篇
  1994年   55篇
  1993年   50篇
  1992年   39篇
  1991年   17篇
  1990年   26篇
  1989年   18篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   10篇
  1984年   9篇
  1983年   2篇
  1982年   5篇
  1980年   4篇
  1979年   2篇
  1976年   2篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有4636条查询结果,搜索用时 15 毫秒
1.
Poly(siloxaneimide) (PSI) segmented copolymers exhibit organized microdomains if the blocks are sufficiently incompatible. As with neat diblock and triblock copolymers, the processing route employed to prepare films of PSI materials is expected to influence the dimensions and/or morphology of the resultant microstructure. In this work, small-angle neutron scattering (SANS) is utilized to characterize the disordered microstructure found in films of a series of PSI copolymers which are subjected to solvent casting and various thermal treatments. Microstructural dimensions such as the periodicity and correlation length are deduced from the Teubner-Strey (TS) model for disordered microemulsions. The scattering intensity of each copolymer up to q = 5.0 nm?1, where q is the scattering vector, is found to scale as q?2.8+?0.1. Results indicate that processing the materials as cast films or as melt-pressed films allowed to cool slowly has a small, but discernible, effect on microstructural characteristics. SANS profiles of films quenched from elevated temperatures reveal a clear transition in microdomain periodicity, which correlates well with the glass transition temperature of the imide microphase in these and other materials of similar chemical structure. © 1993 John Wiley & Sons, Inc.  相似文献   
2.
Two types of low-light-level image sensors have been investigated for use in low distortion recording: an SIT-vidicon (Silicon-Intensifier Target), and a sensor consisting of a newvicon and two stage proxifier. The results are compared and discussed. In addition, a triggerable video frame store is described.  相似文献   
3.
In this paper, a novel algorithm for the detection and localization of the face and eyes in thermal images is presented, particularly the temperature measurement of the human body by measuring the eye corner (inner canthus) temperature. The algorithm uses a combination of the template-matching, knowledge-based and morphological methods, particularly the modified Randomized Hough Transform (RHT) in the localization process, also growing segmentation to increase accuracy of the localization algorithm. In many solutions, the localization of the face and/or eyes is made by manual selection of the regions of the face and eyes and then the average temperature in the region is measured. The paper also discusses experimental studies and the results, which allowed the evaluation of the effectiveness of the developed algorithm. The standardization of measurement, necessary for proper temperature measurement with the use of infrared thermal imaging, are also presented.  相似文献   
4.
We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy of<5 μm was achieved for a 12-mm-wide beam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.  相似文献   
5.

Purpose

To minimize user and vendor dependence of the spectrum processing of prostate spectra, to measure the ratio of choline (Cho) plus creatine (Cr) to citrate (Cit) in the prostate tissue of normal volunteers and cancer patients, and to compare the results with pathologic findings after radical prostatectomy.

Materials and methods

Four healthy volunteers and 13 patients with prostate cancer were measured. Measurements were performed using two-dimensional magnetic resonance spectroscopic imaging (MRSI) and endorectal coil. A standard vendor's spectrum processing approach has been modified. An original feature of this methodology was the combination of vendor-optimized and user-independent spectrum preprocessing in the scanner and user-independent quantitation in the environment of an MRUI software package. (Cho+Cr)/Cit ratio was used for the classification of prostate tissue. Results were compared with histopathology after radical prostatectomy.

Results

Eight of 13 cancer patients were classified as suspicious or very suspicious for cancer at spectroscopy, three were ambiguous for cancer and two patients were evaluated as false negative. A considerable overlap of metabolite ratios at various Gleason score was found.

Conclusion

The proposed spectrum processing has the potential to improve the accuracy and user independency of the (Cho+Cr)/Cit quantitation. This study confirmed the previous results that a considerable overlap of (Cho+Cr)/Cit ratios exists at various Gleason score levels.  相似文献   
6.
We present a 3D video-encoding technique called Holovideo that is capable of encoding high-resolution 3D videos into standard 2D videos, and then decoding the 2D videos back into 3D rapidly without significant loss of quality. Due to the nature of the algorithm, 2D video compression such as JPEG encoding with QuickTime Run Length Encoding (QTRLE) can be applied with little quality loss, resulting in an effective way to store 3D video at very small file sizes. We found that under a compression ratio of 134:1, Holovideo to OBJ file format, the 3D geometry quality drops at a negligible level. Several sets of 3D videos were captured using a structured light scanner, compressed using the Holovideo codec, and then uncompressed and displayed to demonstrate the effectiveness of the codec. With the use of OpenGL Shaders (GLSL), the 3D video codec can encode and decode in realtime. We demonstrated that for a video size of 512×512, the decoding speed is 28 frames per second (FPS) with a laptop computer using an embedded NVIDIA GeForce 9400 m graphics processing unit (GPU). Encoding can be done with this same setup at 18 FPS, making this technology suitable for applications such as interactive 3D video games and 3D video conferencing.  相似文献   
7.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3–6-nm) and a second, less populated mode at larger sizes (11–16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3–4.2-J/cm2. Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser–solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles.  相似文献   
8.
The applicability of laser processing for small-lot micro-electromechanical system devices is discussed in this paper. This simple process could replace conventional complex processes designed with mass production in mind. Ablation, protrusions or surface modification is revealed to occur by argon ion laser scanning into silicon. Which of them occurs depends on the laser power. It is found that the protrusions are covered by a thin layer of oxide; however, oxidation of the modified surface is not established even though some results suggest it. Surface modification is more applicable to surface patterning than coarse protrusion is because the laser-modified surface can be used as a mask in KOH etching to make sharp patterns. The applicability of this method is indicated by demonstrating pattern width control, patterning over a large area and the fabrication of a 16-bit linear scale.  相似文献   
9.
Magnetic resonance imaging (MRI) is particularly well adapted to the evaluation of aortic distensibility. The calculation of this parameter, based on the change in vessel cross-sectional area per unit change in blood pressure, requires precise delineation of the aortic wall on a series of cine-MR images. Firstly, the study consisted in validating a new automatic method to assess aortic elasticity. Secondly, aortic distensibility was studied for the ascending and descending thoracic aortas in 26 healthy subjects. Two homogeneous groups were available to evaluate the influence of sex and age (with an age limit value of 35 years). The automatic postprocessing method proved to be robust and reliable enough to automatically determine aortic distensibility, even on artefacted images. In the 26 healthy volunteers, a marked decrease in distensibility appears with age, although this decrease is only significant for the ascending aorta (8.97±2.69 10−3 mmHg−1 vs. 5.97±2.02 10−3 mmHg−1). Women have a higher aortic distensibility than men but only significantly at the level of the descending aorta (7.20±1.61 10−3 mmHg−1 vs. 5.05±2.40 10−3 mmHg−1). Through our automatic contouring method, the aortic distensibility from routine cine-MRI has been studied on a healthy subject population providing reference values of aortic stiffness. The aortic distensibility calculation shows that age and sex are causes of aortic stiffness variations in healthy subjects.  相似文献   
10.
Acoustic emission sensor is used to research the time-of-flight of the shock wave induced by laser-plasma in air for real time nondestructive evaluation (NDE) of laser shock processing. The time-of-flight of the shock wave propagating from the source to the sensor declines nonlinearly and similarly at the different distances for different laser energies. The velocity of the shock wave at the distance of 30 mm increases faster than that of the distance of 35 mm. The relationship between the laser energy and the distance is almost linearly when the signal with distortion is measured by acoustic emission sensor. Finally, Taylor solution is used to analyze the experimental results, and the empirical formula between the energy of the shock wave and the laser energy is established, which will provide a theoretical basis for real time NDE of laser shock processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号