首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   75篇
  国内免费   5篇
化学   37篇
晶体学   17篇
力学   2篇
数学   3篇
物理学   111篇
  2023年   3篇
  2022年   14篇
  2021年   12篇
  2020年   18篇
  2019年   12篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   11篇
  2001年   2篇
  2000年   9篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1992年   2篇
排序方式: 共有170条查询结果,搜索用时 19 毫秒
1.
黄鸣  王维 《人工晶体学报》2022,51(4):594-599
光伏产业的发展使得对硅材料的需求日益增加,同时硅单晶生产行业竞争也日趋激烈。作为生产硅单晶的重要装备,单晶炉的稳定性和可靠性关系到硅单晶生产效率的提升和成本的下降,因此其驱动系统的设计和优化成为装备制造的关键环节。本文以NVT-HG2000-V1型硅单晶生长炉的驱动系统为研究对象,用SolidWorks三维建模实现虚拟装配,采用ADAMS建立其动力学仿真模型,并对驱动系统的运动过程进行仿真模拟。采用控制变量法定量分析了铜套与升降轴的配合间隙及丝杠参数对驱动力和驱动力矩的影响规律,进而在提高硅单晶生长炉装备稳定性和可靠性方面给出合理的技术建议。结果表明,铜套与升降轴的配合间隙达到0.071 mm后能有效降低驱动系统运行所需驱动力矩,丝杠倾斜度、螺纹螺距与螺纹间摩擦系数的增大均会导致驱动系统运行所需力矩大幅增加。  相似文献   
2.
随着光伏行业的快速发展, 对硅单晶的品质和长晶装备的稳定性的要求也不断提高。直拉法是生产硅单晶的主要方法,通过提高单晶炉副室的高度以扩大单晶硅的生产规模。由于副室高度的大幅增加,且单晶炉提拉头质心相对于旋转轴心有一定距离,对单晶炉整体稳定性有较大影响,从而降低了单晶硅的生产质量。针对此问题,对单晶炉建立可靠的力学分析模型,采用数值仿真方法,对单晶炉整体进行动力学响应分析,计算得到副室高度增加后的单晶炉工作时中钨丝绳下端晶棒的运动规律以及最大摆动幅度,为改进设计提供依据。数值仿真分析表明提高单晶炉副室高度后,提拉头较大的质心偏心是单晶炉提拉系统发生摆动的主要原因。在此基础上提出在提拉头上添加质心调节装置,通过控制系统调节可保证提拉头质心位置在旋转轴线上以降低提拉系统的摆动。  相似文献   
3.
王哲远  王峨锋 《强激光与粒子束》2019,31(12):123002-1-123002-5
输入耦合器是回旋行波管的重要组成部分之一,其作用是将矩形波导TE10模式的信号,通过模式变换结构转换为回旋放大器件中的模式,输入耦合器性能的优劣直接影响了回旋管整管的带宽等性能。通过对W波段TE02模式回旋行波管的输入耦合器进行理论分析,指出影响主模传输损耗的一个因素是杂模的崛起使主模的传输系数降低,利用仿真软件进行仿真,通过优化耦合孔的尺寸,抑制杂模的产生,将损耗从3.9 dB降低到了0.8 dB。根据优化尺寸加工,实际测试,得到3.0 dB带宽7.9 GHz的输入耦合器,与设计符合较好。  相似文献   
4.
建立了一种非衍生化高效液相色谱-串联质谱快速检测生物体液中草甘膦、草铵膦及其代谢物等8种极性农药的方法。8种极性农药经Metrosep A Supp 5阴离子色谱柱(150 mm×4.0 mm,5μm)分离,以纯水-200 mmol/L碳酸氢铵溶液(含0.1%氨水)为流动相进行梯度洗脱,负离子多反应监测(MRM)模式进行检测。实验结果表明,8种极性农药在0.5~50 ng/mL范围内线性关系良好(r2>0.99),检出限(S/N≥3)为0.08~0.3 ng/mL,定量下限(S/N≥10)为0.3~1 ng/mL。方法的基质效应为86.5%~106%,目标化合物的回收率为81.5%~114%,日内相对标准偏差(RSD)为0.30%~2.8%,日间RSD为0.50%~5.3%。该方法无需复杂的衍生化过程,简便快速、灵敏度高、稳定性好,适用于生物体液中8种极性农药的检测。  相似文献   
5.
张长青  冯进军  蔡军  潘攀 《强激光与粒子束》2020,32(10):103003-1-103003-8
针对太赫兹频段实现高功率面临物理机制上的难题,设计了一个G波段带状注速调管,展示了基于非相对论带状电子注和扩展互作用技术所能达到的功率水平以及影响性能的物理因素。文中设计基于电压24.5 kV、电流0.6 A,1 mm×0.15 mm的椭圆电子注,以及与之相匹配的互作用系统,即横向过尺寸哑铃型多间隙谐振腔,可以实现高功率和高增益。三维PIC仿真结果显示,在考虑实际腔体损耗的情况下,能够获得超过500 W的功率,电子效率和增益分别达到3.65%和38.2 dB。研究发现,输出功率和效率的提升很大程度上受到多间隙腔模式稳定性以及电路欧姆损耗的制约;输出腔的欧姆损耗对输出功率影响尤为显著,工程设计需要特别考虑。本文的研究为高频段带状注扩展互作用器件的研发打下了良好的基础。  相似文献   
6.
实验验证了一种通过将氧化石墨烯分散液沉积在长周期光纤光栅的全光控制的相关研究。通过外加的垂直泵浦光的作用,氧化石墨烯吸收泵浦光产生热量,改变长周期光纤光栅的包层模式的相位差,由于热膨胀的作用改变了氧化石墨烯所覆盖部分的光栅周期,使得谐振谱发生了移动,其最大调制深度可达10.6 dB,谐振谱最大可红移12.8 nm。通过实验发现,沉积相同浓度氧化石墨烯分散液的次数影响实验结果,通过在相同光栅的相同位置分别沉积三次,发现沉积三次可以在光纤表面获得更加均匀的氧化石墨烯膜,进行了时间响应的测试,其中沉积三次后的长周期光纤光栅的响应速度可达0.61 ms,沉积多次氧化石墨烯分散液可以在光纤表面沉积得更加平整均匀,从而获得更大的导热性能。  相似文献   
7.
苏思铭  冯进军 《强激光与粒子束》2019,31(12):123102-1-123102-5
斜注管是返波振荡器的一种,通过电子注的倾斜,电子距离慢波结构更近,高频场更强,耦合阻抗和互作用效率更高,显著增加输出功率。对带状注斜注管的互作用系统进行了设计,并首次将双排齿慢波结构应用于斜注管。利用电磁模拟软件和3D粒子模拟软件对设计的斜注管的色散曲线和场分布进行了分析,并对其注-波互作用进行了模拟,可以得到大于100 mW的输出功率以及50 GHz的调谐带宽。输出功率在370.5 GHz频点处处达到峰值2.3 W,电子注电压7.0 kV,注电流120 mA,聚焦磁场1.0 T。  相似文献   
8.
周瑜  刘超  王坤博  魏晓村 《光学学报》2019,39(1):300-306
针对基于相位解调的双光束薄膜干涉型光纤传声器的特性展开了研究,仿真分析了三路信号的直流分项、交流分项以及相位差对双光束薄膜干涉型光纤传声器输出性能的影响。采用对比法,并通过实验研究了基于相位解调的双光束薄膜干涉型光纤传声器的输出特性,实现了灵敏度为193 mV/Pa@1 kHz、频率响应为200 Hz~4 kHz@±3 dB的声信号测量。本研究能够很好地应用于声探测、语音识别等领域。  相似文献   
9.
提出了单层石墨烯包裹双锥形微纳光纤复合波导结构,构建了730~1 700nm超宽带微纳光纤波导全光调制器。通过火焰拉锥法将一根标准的通信单模光纤拉成具有双锥形的微纳光纤,在保证通光率的前提下可以极大的提升微纳光纤处的倏逝波与物质的相互作用。利用石墨烯的"超级特征",即单原子层厚度、线性色散的能带结构、超强的载流子带间跃迁及极短的弛豫时间和超宽带光与物质相互作用等,将单层石墨烯作为可饱和吸收体,包裹在双锥形微纳光纤波导的锥体上,以增强该复合波导表面倏逝波与石墨烯的相互作用。静态和动态全光调制实验中采用传统808nm低功率LD作为泵浦光,对谱宽为480~1 700nm的超连续谱探测光实现了光光调制,其泵浦光功率低于50mW,调制深度大于5.7dB,调制速率达到~4kHz。该微纳光纤波导全光调制器,在保证调制深度的情况下,用更低的泵浦功率实现了超宽带的全光调制,以简单、有效、廉价的方式兼容了当前高速光纤通信网络,打开了一扇未来对微纳超快光信号处理的大门。  相似文献   
10.
介绍一种国内首创的电弧直读光谱仪。该仪器由交/直流电弧激发光源、凹面光栅分光系统、光电倍增管接收器及智能测控系统所组成。研制成功地质样品专用的"交流电弧直读光谱仪"和高纯金属专用的"直流电弧直读光谱仪"可取代1m或2m光栅摄谱仪,省去了光谱相板、洗相及译谱等繁琐的操作程序。在优化的分析条件下,可直接对粉末状地球化学样品及高纯金属氧化物中的多种微量元素同时进行直读光谱测定,具有灵敏、准确、快速的特点,各项技术指标符合所属领域的"国家标准"及"行业规范"的要求。现已有多家使用单位采用"交流电弧直读光谱仪"分析了十几万件地球化学样品中的银、锡和硼等元素,取得了良好的应用效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号